
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Black box optimization for automatic speech
recognition

Watanabe, S.; Le Roux, J.

TR2014-021 May 2014

Abstract

State-of-the-art automatic speech recognition (ASR) systems are very complex, combining mul-
tiple techniques and involving many types of tuning parameters (e.g., numbers of states and
Gaussians in HMMs, numbers of neurons/layers and learning rates in neural networks, etc.). To
reach optimal performance in such systems, deep understanding and expertise of each compo-
nent is necessary, thus limiting the development of ASR systems to skilled experts. To overcome
the problem, this paper studies the use of black box optimization, which automatically tunes
systems without any prior knowledge. We consider an ASR system as a function with tuning
parameters as input and speech recognition performance (e.g., word accuracy) as output, and
we investigate two probabilistic black box optimization techniques: Covariance Mean Adapta-
tion Evolution Strategy (CMA-ES) and Bayesian optimization using Gaussian process. Middle-
vocabulary speech recognition experiments show the effectiveness of black box optimization, as
performance approaching that of fine-tuned systems obtained by experts and/or outperforming
that of sub-optimal systems can be automatically obtained.
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ABSTRACT
State-of-the-art automatic speech recognition (ASR) systems are
very complex, combining multiple techniques and involving many
types of tuning parameters (e.g., numbers of states and Gaussians
in HMMs, numbers of neurons/layers and learning rates in neural
networks, etc.). To reach optimal performance in such systems,
deep understanding and expertise of each component is necessary,
thus limiting the development of ASR systems to skilled experts.
To overcome the problem, this paper studies the use of black box
optimization, which automatically tunes systems without any prior
knowledge. We consider an ASR system as a function with tuning
parameters as input and speech recognition performance (e.g., word
accuracy) as output, and we investigate two probabilistic black box
optimization techniques: Covariance Mean Adaptation Evolution
Strategy (CMA-ES) and Bayesian optimization using Gaussian pro-
cess. Middle-vocabulary speech recognition experiments show the
effectiveness of black box optimization, as performance approaching
that of fine-tuned systems obtained by experts and/or outperforming
that of sub-optimal systems can be automatically obtained.

Index Terms— Speech recognition, Black box optimization,
CMA-ES, Bayesian optimization, Gaussian process

1. INTRODUCTION

The recent research trend in large vocabulary continuous speech
recognition is to combine multiple techniques in a large system,
resulting in a highly complicated system [1–3]. Each of these tech-
niques has some tuning parameters, which have to be optimized
depending on the task, and thus need to be tuned in advance for
practical use. This trend has further accelerated with the emergence
of deep learning, where many types of configurations with different
network topologies and learning rates can be considered [4]. For
example, the numbers of states and Gaussians in HMMs or the num-
bers of neurons/layers and the learning rates in neural networks need
to be tuned. As their impact on performance is complex and highly
intertwined, it is necessary to have deep understanding and expertise
about each component of the system to tune the parameters for opti-
mal performance, thus limiting the development and deployment of
automatic speech recognition (ASR) systems to skilled experts.

To overcome this problem, there have been many efforts to
optimize these tuning parameters for specific components of ASR
systems. For example, as the HMM is a simple generative model,
information criterion approaches and Bayesian approaches can be
used to automatically determine optimal model topologies [5–7].
Bayesian approaches also enable the optimization of some other
hyper-parameters based on the evidence framework [8]. However,
such analytical treatments can be only applied to simple probabilis-
tic models, and it is virtually impossible to apply them to current
complicated systems that combine various probabilistic and non-
probabilistic models.

This paper focuses on an alternative strategy for the optimization
of tuning parameters: by considering an ASR system as a function

with the tuning parameters as inputs and speech recognition perfor-
mance (e.g., word accuracy) as output, we can make use of black box
optimization, which automatically tunes systems without using any
prior knowledge about their inner workings. We consider here two
probabilistic black box optimization techniques based on Covariance
Mean Adaptation Evolution Strategy (CMA-ES) [9] and Bayesian
optimization using Gaussian process [10, 11]. CMA-ES has been
developed as an evolutionary algorithm for continuous value opti-
mization, while Bayesian optimization has been mainly developed in
the machine learning community followed by the progress of Gaus-
sian process studies [12]. These approaches are starting to be widely
used for various pattern recognition problems including neural net-
works with complex topology [13, 14]. They both attempt to effi-
ciently find a set of tuning parameters that yields optimal perfor-
mance of the black box system by optimizing objective functions
computed using some concept of expectation. CMA-ES iteratively
estimates a probability distribution on the input parameters such that
the expectation of the output with respect to the tuning parameters
is highest; neighboring tuning parameters are sampled from the dis-
tribution, thus gradually evolving from initial values to the optimal
values. Bayesian optimization greedily searches for the set of tuning
parameters to try next that will lead to the highest expected improve-
ment of the output compared to previous steps.

This paper provides analytical and empirical discussions of both
approaches, from formulation to middle-vocabulary speech recogni-
tion experiments. Section 2 introduces the formulations of CMA-ES
and Bayesian optimization, and discusses their characteristics for a
practical use. Section 3 shows the effectiveness of black box opti-
mization, especially CMA-ES, by using various ASR experiments.

Relation to prior work
Black box optimization has been previously applied to each com-
ponent module of speech recognition (e.g., HMM training using ge-
netic algorithm and particle swarm optimization [15–17], neural net-
work using Bayesian optimization [18]). However, this paper inves-
tigates the use of black box optimization, especially CMA-ES, to the
paradigm of whole speech recognition systems dealing with various
tuning parameters from various components (e.g., HMM topologies,
deep neural network topologies and learning rates, discriminative
training, and context modeling via LDA).

2. PROBABILISTIC BLACK BOX OPTIMIZATION

Let us represent an ASR system evaluation as a function f of a vec-
tor x of tuning parameters which returns the accuracy y = f(x)
(or some other correctness measures). The D dimensional vector
x denotes for example the number of shared tri-phone states, learn-
ing rates, etc. The process of finding the optimal tuning parameter
x∗, which maximizes the ASR accuracy, can be formulated as the
following optimization problem:

x∗ = argmax
x

f(x). (1)



As ASR systems are extremely complicated, there is no analytical
form for f , and it is difficult to include specific knowledge on f .
Such situations are best handled by considering f as a black box.
Moreover, evaluating f(x) takes a very long time, because we need
to train a model and evaluate it on a development set. The key point
here is thus for the black box optimization to generate appropriate
hypotheses x̂ to find the best x∗ in as few ASR evaluations (f(x))
as possible. We consider two probabilistic black box optimization
approaches.

CMA-ES iteratively estimates the parameters of a sample distri-
bution for x such that the distribution is concentrated in a region with
high values of f(x). Hypotheses are sampled from that distribution:

x̂ ∼ N (x|θ̂) s.t. θ̂ = argmax
θ

∫
f(x)N (x|θ)dx︸ ︷︷ ︸

,E[f(x)|θ]

.
(2)

CMA-ES assumes the sample distribution as multivariate Gaussian
whose parameters (mean vector and covariance matrix) are estimated
so as to optimize the expected value of f(x) under the distribution.

Similarly to CMA-ES, Bayesian optimization also relies on
some concept of expectation. But while CMA-ES involves a distri-
bution over the tuning parameter x and takes the expectation over
x, Bayesian optimization uses a probabilistic model of the out-
put y and considers the expectation of some quantity defined over
y. Several expected objective functions have been proposed [10],
and we use here expected improvement, which is suggested as a
practical choice [11]. We define the improvement from the best
score among m − 1 previous scores as max{0, y − y∗m−1} where
y∗m−1 = max1≤m′≤m−1 ym′ . Bayesian optimization then performs
a deterministic search for the next candidate x̂m by optimizing the
expected improvement over y, aEI(xm):

x̂m = argmax
xm

∫
max{0, y − y∗m−1}p(y|D1:m−1,xm)dy︸ ︷︷ ︸

,aEI(xm)

, (3)

where p(y|D1:m−1,xm) is a predictive distribution of y given ob-
served data D1:m−1 , {x1:m−1, y1:m−1} and xm, modeled as a
Gaussian process. Equation (3) selects xm that is likely to lead to a
high score ym with high confidence given the predictive distribution.

The next subsections describe each method in more details.

2.1. Covariance Matrix Adaptation Evolution Strategy

We describe CMA-ES by following the derivation based on natural
evolution strategies [14,19], which makes the theoretical relationship
with Bayesian optimization more apparent. Since the concrete func-
tion form of f is unknown, it is difficult to deal with Eq. (2) analyt-
ically. To solve this problem, we use a natural gradient method [20]
with Fisher information matrix F and iteratively update θ̂ as:

θ̂n = θ̂n−1 + εF−1 ∇θE[f(x)|θ]|θ=θ̂n−1
, (4)

where n is an iteration index and ε a step size that can be changed
depending on the elements of θ in the implementation. The gradient
of the expectation in Eq. (4) can be derived as follows:

∇θE[f(x)|θ] = E[f(x)∇θ logN (x|θ)|θ]. (5)

This expectation can be approximately computed by using Monte
Carlo sampling with the function evaluation yk = f(xk):

∇θE[f(x)|θ] ≈ 1

K

K∑
k=1

yk∇θ logN (xk|θ), (6)

Algorithm 1 CMA-ES

1: Initialization of µ̂0 and Σ̂0, and y∗0 = ∅
2: for n = 1 to N do
3: for k = 1 to K do
4: Sample xk fromN (x|µ̂n−1, Σ̂n−1)
5: Evaluate yk = f(xk)
6: end for
7: Update µ̂n and Σ̂n

8: Store y∗n = max{y1:K , y∗n−1} and corresponding x∗n
9: end for

10: return (x∗N , y
∗
N )

where xk is sampled from the previously estimated distribution
N (x|θ̂n−1). Since CMA-ES uses a multivariate Gaussian distri-
bution N (x|θ) with mean vector µ and covariance matrix Σ, we
can obtain the analytical forms of µ̂n and Σ̂n by substituting the
concrete Gaussian form into Eq. (6) and F, leading to1:{
µ̂n−1 + εµ

∑K
k=1 w(yk)(xk − µ̂n−1)

Σ̂n−1 + εΣ
∑K

k=1 w(yk)
(
(xk − µ̂n−1)(xk − µ̂n−1)ᵀ − Σ̂n−1

)
(7)

where ᵀ is the matrix transpose. Note that, as in [9], yk in Eq. (6) is
approximated in Eq. (7) as a weight function w(yk), defined as:

w(yk) =
max{0, log(K/2 + 1)− log(R(yk))}∑K

k′=1 max{0, log(K/2 + 1)− log(R(yk′))}
− 1

K
,

(8)
where R(yk) is a function that returns the descending order of yk
among y1:K (i.e., R(yk) = 1 for the highest yk, R(yk) = K for
the smallest yk, etc.). This equation only considers the order of y,
which makes the updates less sensitive to evaluation measurements
(e.g., to prevent from the different results using word accuracies and
the negative sign of error counts). The number of samples K is
automatically determined from the number of dimensions of x [9].

Algorithm 1 summarizes the CMA-ES optimization procedure,
which gradually samples neighboring tuning parameters from the
initial values to the optimal values. Note that, as CMA-ES is a gra-
dient method, initial values need to be set. As CMA-ES assumes a
multivariate Gaussian for x, it is originally suitable for tuning param-
eters that take continuous values, and needs some extra discretization
for discrete value optimization. Finally, the evaluation of f(yk) can
be performed independently for each k and can thus be easily paral-
lelized.

2.2. Bayesian optimization based on Gaussian process

Bayesian optimization analytically obtains the expected improve-
ment from the predictive distribution p(y|D1:m−1,xm) as defined
in Eq. (3). To obtain the predictive distribution, we first consider
the distribution of the observation vector p(y1:m−1|x1:m−1). In the
Gaussian process framework (see [12, 21] for an overview of Gaus-
sian processes), it is represented by an (m − 1)-dimensional Gaus-
sian with zero mean vector and a Gram matrix K as covariance ma-
trix:

p(y1:m−1|x1:m−1) = N (y1:m−1|0,K). (9)

The Gram matrix K is defined as K = (k(xi,xj))i,j with a kernel
function k(x,x′) whose concrete form is discussed later. Similarly,

1Practical implementations of CMA-ES [9] also consider the update of
a global scalar variance term and an additional smoothing term in the co-
variance matrix update to consider the effect of the change of µ̂n−1 for its
update.



Algorithm 2 Bayesian optimization
1: Set the domain X of x0, and y∗0 = ∅
2: for m = 1 to M do
3: Compute x̂m = argmaxxm

aEI(xm)
4: Evaluate ym = f(x̂m)
5: Store y∗m = max{ym, y∗m−1} and corresponding x∗m
6: end for
7: return (x∗M , y

∗
M )

the posterior distribution of [yᵀ
1:m−1, y]ᵀ is also represented by the

following m-dimensional multivariate Gaussian:

p(y1:m−1, y|x1:m) =N
([

y1:m−1

y

]∣∣∣∣0,[ K k(xm)
k(xm)ᵀ k(xm,xm)

])
,

(10)
where k(xm) = [k(x1,xm), . . . , k(xm−1,xm)]ᵀ. Therefore, by
using the classical formula of the conditional multivariate normal
distribution based on the Schur complement, the predictive distribu-
tion is analytically solved as the following Gaussian distribution:

p(y|D1:m−1,xm) = p(y|y1:m−1,x1:m)

∝ N (y|µ(xm), σ2(xm)),
(11)

where the mean parameter µ(xm) and variance parameter σ(xm)
are defined as:

µ(xm) , k(xm)ᵀK−1y1:m−1,

σ2(xm) , k(xm,xm)− k(xm)ᵀK−1k(xm).
(12)

Based on this predictive distribution, we can analytically obtain the
expected improvement function aEI(xm) by substituting Eq. (11)
into Eq. (3) as follows:

aEI(xm) = σ(xm)
(
z(xm)Φ(z(xm)) +N (z(xm)|0, 1)

)
, (13)

where Φ is the cumulative distribution function of the standard nor-
mal distribution (i.e., Φ(x) = 1/

√
2π
∫ x

−∞ e
−t2/2dt), and z(xm) is

a normalized average gain defined as follows:

z(xm) , (µ(xm)− y∗m−1)/σm(xm). (14)

We can thus obtain x̂m by evaluating Eq. (13) numerically, which
can be performed quickly for a small number of m thanks to the
analytical expression.

As for the kernel function k(x,x′), [11] proposes to use the fol-
lowing kernel:

k(x,x′) =
(

1 +
√

5s(x,x′) +
5

3
s(x,x′)

)
φ0e
−5s(x,x′), (15)

where s(x,x′) is the l2 distance of x and x′ with a metric φd:

s(x,x′) =

D∑
d=1

(xd − x′d)2

φ2
d

. (16)

The coefficients {φd}Dd=0 are hyper-parameters in this kernel, and
[11] marginalizes them out in obtaining the expected improvement
function by using Markov Chain Monte Carlo (MCMC).

The basic algorithm of Bayesian optimization is shown in Algo-
rithm 2. While for CMA-ES one needs to set initial values for x,
for Bayesian optimization one needs to set the domain of x. Un-
like CMA-ES, Bayesian optimization makes no assumption on the
type of tuning parameters, and can handle continuous and discrete

Table 1. WERs (%) for CMA-ES and Bayesian Optimization (BO)
on Resource Management tasks RM-ML and RM-NN.

CMA-ES BO Random Human expert
RM-ML 1.56 1.56 1.63 1.92
RM-NN 1.42 N/A N/A 1.54

Table 2. WERs (%) for CMA-ES on the WSJ-SI284 task (WSJ-DT)

CMA-ES Human expert
Dev. 7.52 7.65
Eval. 4.55 4.59

values without extra processing. Parallelization can be performed
when computing the expected improvement function aEI(xm) with
the Monte Carlo sampling. However, the greedy search resulting
from Bayesian optimization often selects tuning parameters on the
edges of the parameter domains X (e.g., large model complexities,
small step sizes), which leads to extremely long function evaluations.
This actually makes the ASR evaluation difficult in our experiments.

3. EXPERIMENTS

We performed multiple middle-vocabulary ASR experiments for the
following task settings with different types of tuning parameters x:

• RM-ML: Resource Management with ML training
x = {# of HMM states, # of Gaussians}

• RM-NN: Resource Management with neural networks
x = {# of HMM states, # of Gaussians, # of hidden units, #
of layer, initial learning rate, final learning rate}

• WSJ-DT: Wall Street Journal with discriminative training
x = {# of HMM states, # of Gaussians, # of UBM Gaussians,
boosting factor, i-smoothing factor, learning rate}

• Reverb: Reverb Challenge 2014 with ML training
x = {# of HMM states, # of Gaussians, # of LDA left con-
texts, # of LDA right contexts}

We used CMA-ES, as explained in Section 2.1, for most of the exper-
iments because of its popularity in black box optimization [22], and
because it proved to be easier to handle than Bayesian optimization:
as discussed above, Bayesian optimization had the problematic ten-
dency of trying tuning parameters that had too large model complex-
ities and/or too small step sizes, resulting in extremely long function
evaluations2. However, since the RM-ML task is relatively small, we
were able to compare CMA-ES, Bayesian optimization (as described
in Section 2.2), and random greedy search on that task. In the results,
we listed for each task the best score y∗ among all evaluations per-
formed through Algorithms 1 and 2. We used the python version of
CMA-ES3 with some discretization for discrete tuning parameters in
our implementation, and the Spearmint package for Bayesian opti-
mization4. The ASR experiments were performed by using the Kaldi
ASR toolkit [23], and followed the standard recipes in the toolkit for
RM-ML, RM-NN, and WSJ-DT tasks. The human expert results
in our experiments were basically obtained using the parameters as
tuned in the recipes. The Reverb Challenge [24] is a reverberant
speech enhancement and recognition challenge which is part of the
IEEE SPS AASP challenge series based on the 5k WSJCAM0 task.
We also used the Kaldi ASR toolkit for the multi-condition ASR task
of the Reverb Challenge, with ML training, LDA feature transforma-
tion, and MLLR adaptation [25].

2Careful setting of the tuning parameter domains might solve the prob-
lem, but it would assume human expert knowledge.

3https://www.lri.fr/˜hansen/cmaes_inmatlab.html
4https://github.com/JasperSnoek/spearmint
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Fig. 1. CMA-ES results on the Resource Management ML training task (RM-ML) for bad and good initializations using four seeds.

Table 3. WERs (%) on the Reverb Challenge (Reverb).
SimData RealData

Room1 Room2 Room3 Ave. Room1 Ave.
Near Far Near Far Near Far Near Far

Baseline 13.27 17.08 20.80 36.83 23.54 39.44 25.16 47.91 46.55 47.23
LDA+fMLLR 10.82 13.30 14.81 28.40 16.25 31.16 19.12 43.11 39.71 41.41

CMA-ES 10.37 13.20 13.48 25.46 15.03 27.30 17.47 36.68 34.11 35.40

3.1. Robustness against initializations
The first aim of the experiments was to investigate the robustness of
CMA-ES to the quality of the initialization. We used the RM-ML
task, which is relatively small, to compare results with good and bad
initializations of the tuning parameters with four random seeds for
sampling (x ∼ N (x|θ̂)). The tuning parameters considered were
the number of HMM states in the triphone clustering and the number
of Gaussians, which are the main tuning parameters in HMM-based
ASR [7]. Figure 1 shows that, even when using a bad initialization
(x = (500, 1000)), the performance converged to that obtained by
the human expert and the good initialization (x = (1800, 9000))
for all random seeds. Although many trials (from 60 to 150) were
required for convergence, they were parallelized on 6 CPUs, thus
dividing the wall clock time by 6 (roughly 17.5 hours on average
on an Intel R© CoreTM i7-2600 CPU @ 3.40GHz machine). These
results confirm the robustness of CMA-ES optimization with respect
to tuning parameter initializations.

3.2. Robustness against task variations
The next experiments investigated the robustness of black box opti-
mization to variations in the ASR tasks. Table 1 provides the word
error rates for RM-ML and RM-NN tasks. In the RM-ML tasks, both
CMA-ES and Bayesian optimization achieved comparable (actually
better, but it is not statistically significant) performance to that of the
human expert and random search. CMA-ES also achieved compara-
ble performance to that of the human expert in the RM-NN task.

Since this kind of optimization runs the risk of over-tuning,
which would result in degraded performance on an open evaluation
set, we compare in Table 2 the CMA-ES and human expert results
on both the development (dev93) and evaluation (eval92) sets of
the WSJ 20k tri-gram task, where the parameters were tuned by
only using the development set. CMA-ES again achieved compa-

rable performance to that of the human expert on both sets, which
empirically confirms the mitigation of a potential risk of over-tuning.

Finally, Table 3 compares results, for the multi condition ASR
task of the Reverb Challenge, of the HTK baseline with adaptation
[24], the Kaldi baseline with adaptation and LDA [25], and the Kaldi
baseline with CMA-ES. Since reverberation corrupts speech features
across several frames, we included the context sizes in LDA in the
parameters tuned by CMA-ES. The results clearly show that CMA-
ES optimization successfully tuned the previous and future context
sizes as 7 and 5 frames respectively, largely improving reverberant
speech recognition performance for SimData (19.12% → 17.47%)
and RealData (41.41%→ 35.40%).

This series of experiments confirmed the effectiveness of black
box optimization, through which we were able to automatically ob-
tain similar performance to fine-tuned systems designed by experts.

4. SUMMARY

This paper investigated the application of black box optimization
techniques based on CMA-ES and Bayesian optimization to ASR
parameter tuning. Multiple experiments show that the construction
of ASR systems with black box optimization is robust against tun-
ing initializations and task variations. This can reduce the effort of
tuning ASR systems by experts, and accelerate the deployment of
ASR for wider applications. Future work will develop black box op-
timization methods more specific to speech recognition to achieve
faster convergences.
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