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Abstract

Adaptive estimation of the state-of-charge (SoC) for batteries is increasingly appealing, thanks

to its ability to accommodate uncertain or time-varying model parameters. We propose to improve

the adaptive SoC estimation usingmultiple modelsin this study, developing a unique algorithm

calledMM-AdaSoC. Specifically, two submodels in state-space form are generated from a modi-

fied Nernst battery model. Both are shown to be locally observable with admissible inputs. The

iterated extended Kalman filter (IEKF) is then applied to each submodel in parallel, estimating

simultaneously the SoC variable and unknown parameters. The SoC estimates obtained from the

two separately implemented IEKFs are fused to yield the finaloverall SoC estimates, which tend

to have higher accuracy than those obtained from a single-model. Its effectiveness is demonstrated

using simulation and experiments. The notion of multi-model estimation can be extended promis-

ingly to the development of many other advanced battery management and control strategies.
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1. Introduction

Industrial applications of batteries usually require a well-designed management system for

operational safety and performance, which monitors the running status and regulates the charg-

ing/discharging processes [1]. One of its fundamental functions is to estimate the state-of-charge

(SoC), i.e., the percentage ratio of the present battery capacity over its maximum capacity.
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Literature review:SoC estimation has remained an active research field during the past years,

and the reader may refer to [2] for a survey. A notable trend inthis area is the increasing emphasis

on model-based estimation methods. The dynamic models, derived from either equivalent circuits

or electrochemical principles, facilitate the assimilation of the battery data and lead to real-time

SoC estimation with bounded errors. While battery modelinghas been well-accomplished [3],

more attention is being geared towards the development of estimation algorithms. Application

of the Kalman filtering (KF) techniques has been remarkable in this respect. The classical lin-

ear KF and its extensions to nonlinear systems, including the extended KF (EKF), unscented KF

(UKF), iterated extended KF (IEKF), have been used to deal with SoC estimation based on electro-

chemical and equivalent circuit models, see [4–13]. A variety of other state observers originating

from control approaches have also played a role in constructing SoC estimators. Here, we high-

light the sliding mode observer [14], adaptive model reference observer [15], Lyapunov-based

observer [16] and PDE-based observer [17, 18].

Since a good model is a prerequisite, model-based SoC estimation typically follows after the

procedures of dynamic modeling and parameter identification. However, accurate identification is

challenging. First, the parameters in a battery model are often subject to changes with time and

operational conditions. For instance, the internal resistance will rise and the capacity diminish as

a result of battery aging. Another example is the charging and discharging efficiencies, which are

dependent on the SoC, magnitude of current and temperature.Second, the parameters may differ

from one battery to another, making identification for each battery at least rather cumbersome.

Therefore, adaptive approaches are more desirable, merging both identification and SoC estimation

in one step. As shown in Fig. 1, an adaptive SoC estimator gives not only the SoC estimates but

also the estimates of the model parameters in real time afterassimilating the current-voltage data

on the basis of a model. The parameter estimates will then be used to update the model to aid the

next-step estimation.

Adaptive SoC estimation has been attracting considerable attention in the recent literature. An

adaptive EKF-based SoC estimator is designed in [9], which interacts with a parameter estimator.

In [11], state augmentation is conducted to incorporate theSoC variable and model parameters,

and then the UKF is applied to estimate the augmented state. However, the convergence, and as

a result, the accuracy, are noted to be difficult to guarantee. In [13], an adaptive SoC estimator

is developed using the IEKF, guided by an analysis of the observability/identifiability. Novel

adaptive PDE observers for SoC estimation have also been reported in [19]. It should be noted

that all these existing approaches are based on a single battery model, and here we instead propose

to exploit multiple models for better estimation performance.
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Statement of contributions:In this paper, we aim to achieveadaptive, high-fidelity and easy-

to-implement SoC estimation. For this purpose, we seamlessly link the notion of ‘multiple models’

and adaptive SoC estimation. A multitude of models, compared to a single one, can give a better

description of complicated uncertain dynamics [20–22], thus particularly suitable to deal with

the tasks relevant to batteries. The design of the adaptive SoC estimator partially builds on our

previous work [13]. In that work, we propose an adaptive approach for SoC estimation via IEKF-

based simultaneous state and parameter estimation. While credible estimation is observed, the

accuracy is still limited in [13] by the mismatch between themodel and the true system. This fact

motivates the development of theMM-AdaSoC algorithm in this paper.

An overview of the construction ofMM-AdaSoC is as follows. First, multiple submodels are

brought up from a modified Nernst battery model by fixing some parameters and assuming the

others unknown. Each submodel is shown locally observable with admissible inputs by rigor-

ous analysis. Then, an adaptive SoC estimation scheme will be implemented simultaneously but

separately to each submodel, with the submodel in each implementation assumed true. The SoC

estimates resulting from different submodels will be fusedin the light of a certain strategy to ob-

tain the final estimate. As such, we boost the accuracy of SoC estimation despite the presence of

uncertainties plaguing battery models.

The main contributions of this paper lie in two aspects. First, this is the first known study

of multi-model adaptive SoC estimation to the best of our knowledge, and it is shown that the

proposedMM-AdaSoC algorithm provides more accurate estimation while maintaining a good

balance over the computational cost. Second, we introduce the multi-model framework for battery

management and control. In addition to the proposedMM-AdaSoC, we discuss various other

ways for SoC estimation enhanced by multiple models. Many more battery management strategies

involving estimation and control can also be improved on a multi-model basis.

Organization:The rest of the paper is organized follows. Section 2 presents a basic review of

the multi-model estimation theory. Section 3 describes themodel construction and gives observ-

ability analysis. Section 4 incorporates adaptive SoC estimation and multi-model estimation to

establish theMM-AdaSoC algorithm, the effectiveness of which is validated in Section 5 by sim-

ulation and experimental results. Finally, Section 6 gathers our conclusions and ideas for future

work.

2. Basics of Multi-model Estimation

The structure of a typical multi-model estimator is shown inFig. 2. In this section, we give a

review of the multi-model estimation, with an emphasis on the estimate fusion strategy.
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Its first part is composed of a bank of parallel filters based ondifferent models. Each filter

assimilates the data to produce its own estimate. All the estimates will then be fused to give the

best estimate. Many options exist for the elemental filter, such as the KF for a linear model or the

EKF for a nonlinear one. What is of particular interest here is the design of the fusion strategy.

Let us consider a general system. Its unknown state at time instantk is denoted byxk ∈ R
nx

and its measurement byzk ∈ R
nz. Different models are available to describe the system, leading

to a model setM= {M1,M2, · · · ,MN}. Suppose thatMi is given by

Mi :

{
xk+1 = f i(xk)+wi

k,

zk = hi(xk)+vi
k,

(1)

wheref i andhi areC1 functions to represent the state transition and measurement, respectively,

and{wi
k} and{vi

k} are uncorrelated, zero-mean, white Gaussian noise sequences with covariances

Qi
k ≥ 0 andRi

k > 0, respectively. While assuming that the true system coincides with one model

at each time instant, we do not know which model matches the system at any time. Thus a prob-

abilistic description is used. Letsk denote the system running status atk. It may take anyMi for

i = 1,2, · · · ,N to address the uncertainty of model matching. The probability of the eventsk = Mi

is denoted asp(sk =Mi), or simply,p(si
k). In other words,p(si

k) indicates thea priori probability

that the true model isMi at timek. Obviously,∑N
i=1 p(si

k) = 1.

From a statistical perspective,xk and zk are continuous random variables andsk a discrete

one. Without causing confusion, we use the symbolp to denote the probability density function

(pdf), probability mass function (pmf) or mixed pdf-pmf in the sequel for convenience. We define

the information set asZk = {z1,z2, · · · ,zk} and intend to estimatexk from Zk, hence considering

p(xk|Zk). By the Bayes’ theorem, we have

p(xk|Zk) =
N

∑
i=1

p(xk,s
i
k|Zk)

=
N

∑
i=1

p(xk|s
i
k,Zk)p(s

i
k|Zk). (2)

Whenp(xk|Zk) becomes available, we can carry out minimum-mean-square-error (MMSE) esti-

mation or Maximum a Posteriori (MAP) estimation ofxk:

MMSE: x̂k|k = E(xk|Zk) =

∫
xk|kp(xk|Zk)dxk,

MAP: x̂k|k = argmax
xk

p(xk|Zk).
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Independent of the method (MMSE or MAP) used, it follows from(2) that

x̂k|k =
N

∑
i=1

x̂i
k|kp(si

k|Zk), (3)

where x̂i
k|k is the estimate ofxk based on the modelMi . An observation from this analysis is

that p(si
k|Zk) turns out to be a probabilistic weight coefficient. The associated estimation error

covariance is

Pk|k = E
[
(x̂k−xk)(x̂k−xk)

⊤
∣∣∣Zk

]

=

∫
(x̂k−xk)(x̂k−xk)

⊤p(xk|Zk)dxk

=
N

∑
i=1

∫
(x̂k−xk)(x̂k−xk)

⊤p(xk,s
i
k|Zk)dxk

=
N

∑
i=1

∫
(x̂k−xk)(x̂k−xk)

⊤p(xk|s
i
k,Zk)dxkp(si

k|Zk)

=
N

∑
i=1

[
Pi

k|k+(x̂k− x̂i
k)(x̂k− x̂i

k)
⊤
]

p(si
k|Zk). (4)

Let us take a closer look atp(si
k|Zk). Using the Bayes’ theorem again, we see that

p(si
k|Zk) =

p(si
k,Zk)

p(Zk)

=
p(zk|si

k,Zk−1)p(si
k|Zk−1)

p(zk|Zk−1)

=
p(zk|si

k,Zk−1)p(si
k|Zk−1)

∑N
j=1 p(zk,s

j
k|Zk−1)

=
p(zk|si

k,Zk−1)p(si
k|Zk−1)

∑N
j=1 p(zk|s

j
k,Zk−1)p(s

j
k|Zk−1)

. (5)

Furthermore, we have

p(zk|s
i
k,Zk−1) =

∫
p(zk,xk|s

i
k,Zk−1)dxk

=
∫

p(zk|xk,s
i
k,Zk−1)p(xk|s

i
k,Zk−1)dxk

=

∫
p(zk|xk,s

i
k)p(xk|s

i
k,Zk−1)dxk.
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Under the mildly simplified assumption thatp(zk|xk,si
k) = N

(
hi(xk),Ri

k

)
and p(xk|si

k,Zk−1) =

N

(
x̂i

k|k−1,P
i
k|k−1

)
, p(zk|si

k,Zk−1) can be approximated as

p(zk|s
i
k,Zk−1)≈ (2π)−

nz
2
∣∣Si

k

∣∣− 1
2 exp

[
−

1
2
(z̃i

k)
⊤|Si

k|
−1z̃i

k

]
,

where

z̃i
k = zk−hi(x̂i

k|k−1),

Si
k = H i

kP
i
k|k−1(H

i
k)
⊤+Ri

k,

H i
k =

∂hi

∂x

(
x̂i

k|k−1

)
.

Furthermore,

p(si
k|Zk−1) =

p(Zk−1|si
k)p(s

i
k)

p(Zk−1)
= p(si

k),

sincep(Zk−1|si
k) = 1 andp(Zk−1) = 1 becauseZk−1 is an event with probability 1 at timek−1.

If we defineµ i
k = p(si

k|Zk) andwi
k = p(zk|si

k,Zk−1) and supposeπ i
k = p(si

k), (5) becomes

µ i
k =

wi
kπ i

k

∑N
j=1w j

kπ j
k

. (6)

Hence, by (3)-(4), the fusion strategy, or the fuser as is called, is given by

x̂k|k =
N

∑
i=1

x̂i
k|kµ i

k, (7)

Pk|k =
N

∑
i=1

[
Pi

k|k+(x̂k− x̂i
k)(x̂k− x̂i

k)
⊤
]

µ i
k. (8)

The final conclusion drawn from this analysis is as follows: the fused estimate (covariance) is a

linear weighted combination of the estimates from the elemental filters. It can be noted that

• The estimation is based on a series of elemental filters and the fusion. The process is similar

to a ‘ weight-based reconciliation’, which balances the role that different models potentially

play in the estimation task.

• The residuals of the elemental filter based on the ‘correct’ model that best match the true
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system is expected to be remarkably smaller than those of theothers [20]. As a result, the

probabilistic weight associated to this filter, say,µ∗k , will tend to increase and downplay the

others. The fused estimate will approach the estimate basedon the correct model.

3. Battery Models and Observability Analysis

We investigate the battery modeling in this section. We firstdevelop two submodels from a

slightly modified Nernst model and then analyze the local observability properties for each one.

3.1. Construction of Multiple Battery Models

A battery model consists of a set of equations that relate theinput (charging/discharging cur-

rent), the state variables (e.g., SoC) and the output(terminal voltage). Various models have been

proposed and used, depending on the specific purposes. For SoC estimation, we consider the

Nernst model here [5]:

yk = K1+K2 ln(SoCk)+K3 ln(1−SoCk)−Ruk, (9)

whereyk is the terminal voltage at time instantk, uk is the applied current (u> 0 for discharging

andu< 0 for charging),R is the internal resistance, andKi for i = 1,2,3 are constants. To make (9)

more capable of grasping the dynamics of certain batteries,we propose the following modification:

yk = K1+K2 ln(τ1+SoCk)+K3 ln(τ2+1−SoCk)−Ruk, (10)

where two additional constantsτ1 andτ2 are added. In above,K1+K2 ln(τ1+SoCk)+K3 ln(τ2+

1−SoCk) in (10) can be regarded as the open-circuit voltage (OCV) term. The dynamic change

of the SoC is described by the integration of the current overtime. In the discrete time, it is given

by

SoCk = SoC0−
k−1

∑
i=0

η ·∆T
C0

ui ,

whereη is the Coulombic efficiency,C0 the nominal capacity in ampere-hour (Ah), and∆T is the

sampling period. An equivalent difference equation is

SoCk+1 = SoCk−K0uk, (11)
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whereK0 = η ·∆T/C0. We then obtain a state-space model for batteries by puttingtogether (10)-

(11). The model state is SoCk and the parameters areKi for i = 0, · · · ,3 andR.

For adaptive SoC estimation, we will perform simultaneous estimation of the SoC and the pa-

rameters. To obtain a locally observable model, one or several parameters usually need to be fixed

in order to estimate the others and the SoC. A few options may exist regarding which parameters

are fixed. Based on our experience with the considered model,we separate the parameters into two

sets, fix one set and augment the state vector to incorporate the SoC and the other set. Accordingly,

two submodels will be constructed.

LettingK0 andK1 be fixed, the first one can be obtained:

M1 :

{
x1

k+1 = f1(x1
k,uk),

yk = h1(x1
k,uk),

(12)

where

x1
k =

[
SoCk K2 K3 R

]⊤
,

f1(x1
k,uk) = x1

k−
[
K0 0 0 0

]⊤
uk,

h1(x1
k,uk) = K1+x1

k,2 ln(τ1+x1
k,1)+x1

k,3 ln(τ2+1−x1
k,1)−x1

k,4uk.

Analogously, by fixingKi for i = 1,2,3, we have

M2 :

{
x2

k+1 = f2(x2
k,uk),

yk = h2(x2
k,uk),

(13)

where

x2
k =

[
SoCk K0 R

]⊤
,

f2(x2
k,uk) =

[
x2

k,1−x2
k,2uk 0 0

]⊤
,

h2(x2
k,uk) = K1+K2 ln(τ1+x2

k,1)+K3 ln(τ2+1−x2
k,1)−x2

k,3uk.

Remark 1. In an implicit manner,M1 places more confidence on the state equation (11), assum-

ing thatK0 is accurate, while the belief in the measurement equation (10) is emphasized inM2

similarly. Nevertheless, it is noteworthy that the confidence level on each submodel during the

estimation process is dynamically determined by the fusionstrategy outlined earlier in Section 2.
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Remark 2. An extended series can be constructed on the basis of each submodel if we let the

parameters take different values that are believed to be close or equal to the truth. For instance,

the Coulombic efficiency may be 100%, 90% or even 80% depending on the operating conditions.

ThenM1 will give birth to three more submodels ifK0 assumes∆T/C0, 0.9∆T/C0 and 0.8∆T/C0,

respectively. This allows considerable flexibility for us to describe the battery dynamics and brings

improvements to the single-model case.

3.2. Observability Analysis

It is well-known that state estimation requires a ‘certain’kind of observability of the system.

Hence, we will analyze the observability properties ofM1 andM2 before proceeding to SoC

estimation.

Consider a general single-input-single-output (SISO) system

S :

{
xk+1 = f(xk,uk),

yk = h(xk,uk),
(14)

wherex ∈ X of dimensionn, y ∈ Y andu∈ U. We assume that 1)X andY connected, second

countable, Hausdorff, differentiable manifolds of classCq with q∈ N, 2)U is an open interval of

R, and 3)f :X×U→X andh :X→Y are of classCq. For convenience,f(x,u) is denoted asfu(x),

andh(f(x,u0),u1) = hu1 ◦ fu0(x). Following [23, 24], the local observability forS is defined as

follows:

Definition 1. (Distinguishability)Two statesx andx∗ are said to be indistinguishable, written as
x ⇄ x∗, if for each l 6= 0 and for each input sequence,{u0, · · · ,ul} ∈ U

l , we have

hul ◦ ful−1 ◦ · · · ◦ fu0(x) = hul ◦ ful−1 · · · ◦ fu0(x∗).

Otherwise, they are distinguishable.

Definition 2. (Local observability)The systemS is locally observable if for any statexo ∈ X,
there exists a neighborhoodD of xo such that,x ⇄ x∗ impliesx = x∗ for eachx,x∗ ∈ D.

By Definitions 1-2, local observability means thatxo can be distinguished from its neighbors

given the input sequence{u0, · · · ,ul} and the output sequencey0, · · · ,yl . It should be noted that

this definition of observability depends not only on the system itself but also on the applied inputs,

unlike the uniform observability for any inputs defined in [25]. While one sees various definitions

of nonlinear observability in the literature, this does notobstruct our discussion since they are
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usually about ‘different measurements results from different initial states (for admissible inputs)’.

The interested reader can refer to the literature on the subject, e.g., [26].

To address the observability condition, the following setsof functions are defined:

Ω0 = {h(·)},

Ωl = {h
u j ◦ fu j−1 ◦ · · · ◦ fu0(·) : ui ∈ U∀i = 1, · · · , j and 1≤ j ≤ l},

Ω = ∪ j≥0Ωl .

An observability criterion is presented in the following theorem, please see [23] for the proof.

Theorem 1. [23] If dim dΩ(x) = n ∀x ∈ X, then the systemS is locally observable.

Theorem 1 gives a sufficient condition to determine the localobservability by relating it to the

full dimensionality of the codistribution dΩ. Now the local observability ofM1 andM2 can be

analyzed using Theorem 1. Let us takeM1 for an example since the analysis for both follows

similar lines.

Note thatf1 andh1 are of classC∞. Suppose that the initial state isx1
0 for M1 and that there

areL measurements{y1, · · · ,yL}. By (12),x1
k is given by

x1
k = x1

0−
[
K0 0 0 0

]⊤ k−1

∑
i=0

ui .

Hence, we have

h̄1
k(x

1
0) = h1uk ◦ f1uk−1 ◦ · · · ◦ f1u0(x1

0)

= K1+x1
0,2 ln

(
τ1+x1

0,1−K0

k−1

∑
i=0

ui

)
+x1

0,3 ln

(
τ2+1−x1

0,1+K0

k−1

∑
i=0

ui

)
−x1

0,4uk,

whereh̄1
k ∈Ω. Define a matrixJ with dimensionsL×4:

J =
[

dh̄1
1

dx1
0
· · ·

dh̄1
k

dx1
0
· · ·

dh̄1
L

dx1
0

]⊤
.

The elements in thek-th row ofJ are

Jk,1 =
∂ h̄1

k

∂x1
0,1

=
x1

0,2

τ1+x1
0,1−K0 ∑k−1

i=0 ui
−

x1
0,3

τ2+1−x1
0,1+K0 ∑k−1

i=0 ui
,
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Jk,2 =
∂ h̄1

k

∂x1
0,2

= ln

(
τ1+x1

0,1−K0

k−1

∑
i=0

ui

)
,

Jk,3 =
∂ h̄1

k

∂x1
0,3

= ln

(
τ2+1−x1

0,1+K0

k−1

∑
i=0

ui

)
,

Jk,4 =
∂ h̄1

k

∂x1
0,4

=−uk.

By observation, we have the following conclusions:

• The submodelM1 is locally observable if a suitable input sequence{uk} is applied. By

‘suitable’, we mean thatuk varies sufficiently in magnitude over time, or in other words,

{uk} contains a rich mix of frequency contents. In this case,J will have full column rank,

and as a result, dim dΩ has a dimension of 4, satisfying the condition in Theorem 1. It

should be emphasized such a condition imposed on the input isa mild constraint that can be

easily satisfied when a battery is in use.

• We can analogously determine thatM2 is also locally observable if a suitable{uk} is used

to excite the system.

• Additional submodels other thanM1 andM2 can be constructed by fixing different param-

eters. An example is to fix onlyK1, which will lead to another locally observable model.

However, no matter how many submodels are used, the essence of multi-model adaptive

SoC estimation remains the same, as will be seen in Section 4.It is also noteworthy that the

resultant submodel will be unobservable if all the parameters are assumed unknown.

4. Multi-model Adaptive SoC Estimation

In this section, we study multi-model adaptive SoC estimation on the basis of Sections 2 and 3.

An IEKF-based elemental filter will be applied toM1 andM2, respectively, for adaptive SoC

estimation. The overall estimate will be obtained by fusingall the estimates for the elemental

filters, leading to theMM-AdaSoC algorithm.

4.1. Adaptive SoC Estimation

Adaptive SoC estimation can be attained via state estimation, because the state vector of each

consists of both the SoC variable and the parameters. Following [13], we use the IEKF. As an
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improved version of the EKF, it is capable of giving more accurate state estimates even for highly

nonlinear systems by iteratively refining the estimate around the current point at each time instant.

Consider applying the IEKF to the system in (14). Atk−1, prediction can be made about the

next time instant. The formulas are as follows:

x̂k|k−1 = f(x̂k−1|k−1,uk−1), (15)

Pk|k−1 = Fk−1Pk−1|k−1F⊤k−1+Q, (16)

wherex̂ is the estimate ofx, P is the error covariance,Q≥ 0 is an adjustable matrix to account for

the process noise, andF is given by

Fk−1 =
∂ f
∂x

(
x̂k−1|k−1,uk−1

)
.

When the measurementyk arrives,x̂k|k−1 can be updated by the new informationyk brings. The

procedure is based on iteration. Letℓ denote the iteration number andx̂(ℓ)k|k = x̂k|k−1 for ℓ= 0. The

update formulas are

K (ℓ)
k = Pk|k−1H(ℓ−1)

k

[
H(ℓ−1)

k Pk|k−1H(ℓ−1)
k

⊤
+R

]−1

, (17)

ŷ(ℓ)k = h
(

x̂(ℓ−1)
k|k ,uk

)
, (18)

x̂(ℓ)k|k = x̂k|k−1+K (ℓ)
k

[
yk− ŷ(ℓ)k −H(ℓ−1)

k

(
x̂k|k−1− x̂(ℓ−1)

k|k

)]
, (19)

whereR> 0 accounts for the measurement noise and

H(ℓ)
k =

∂h
∂x

(
x̂(ℓ)k|k,uk

)
.

The iteration process stops whenℓ achieves the pre-specified maximum iteration numberℓmax or

when the error between two consecutive iterations is less than the pre-selected tolerance level.

Thenx̂k|k = x̂(ℓmax)
k|k , and the associated error covariance is given by

Pk|k =
[
I −K (ℓmax)

k H(ℓmax)
k

]
Pk|k−1.

Following the above description, the IEKF can be applied as an elemental filter toM1 and

M2. The resultant state estimates arex̂1
k|k andx̂2

k|k, respectively. Accordingly, the SoC estimates

are denoted aŝSoC
1
k = x̂1

k|k,1 andŜoC
2
k = x̂2

k|k,1, respectively.
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4.2. MM-AdaSoC: Multi-model Adaptive SoC Estimation

The SoC estimates produced fromM1 andM2, ŜoC
1
k andŜoC

2
k, respectively, can be combined

weightedly to generate the overall estimatêSoCk. In the light of the fusion strategy in (7)-(8), we

have

ŜoCk =
2

∑
i=1

ŜoC
i
kµi , (20)

where the weight coefficientµi for i = 1,2 can be determined using (6).

Putting together the results, we obtain theMM-AdaSoC algorithm, as is summarized in Table 1.

Remark 3. The underlying idea of the proposedMM-AdaSoC algorithm is that the IEKF-based

adaptive SoC estimation is carried out for multiple models and then the estimation results are fused

to yield the overall SoC estimate. For theMM-AdaSoC, the recursive and real-time implementa-

tion cuts down the amount of stored data. Meanwhile, higher estimation accuracy is achieved,

because the update procedure relies on iterative searchingat each recursion. Another noteworthy

advantage is that a good balance is maintained between the estimation performance and the com-

putational complexity, conceding a generally linear moderate increase of the demanded computing

power depending on the number of models used.

Remark 4. The applicability of the proposedMM-AdaSoC algorithm to different types of bat-

teries is quite promising. Due to its parameterized characterization, the Nernst model has been

found capable of describing the dynamics of many batteries,e.g., nickel metal hydride (NiMH),

LiMn2O4 and LiCoO2. As a result, theMM-AdaSoC algorithm can be well applied to such batter-

ies for its construction based on the Nernst model.

Remark 5. Not limited to theMM-AdaSoC algorithm at all, the role that multi-model estimation

can play is more profound. It can be developed as a framework,within which variety of advanced

estimation methods can be built for battery applications. Here, we identify five potential sources

of multiple models:

• a set of submodels established from a battery model by fixing certain parameters for adaptive

SoC estimation, as we have done in this paper,

• a set of submodels established from a model by assuming different sets of values for model

parameters,

13



• a set of different models constructed in different ways, such as an equivalent-circuit model

and an electrochemical-principles-based model,

• a set of models capturing different characteristics of batteries, e.g., the charging and dis-

charging processes, cycling and aging effects, and

• a multitude of (sub)models combining the above four cases.

The multi-model approach promises three-fold benefits.

• It better apprehends the battery dynamics known to be complex and multi-faceted, thus

promoting the accuracy and robustness of SoC estimation.

• It reduces the complexity of estimator design, especially when highly nonlinear battery dy-

namics are involved, in a ‘divide-and-conquer’ manner. Simple and elegant solutions will

be achieved and theoretical analysis is made easier.

• It can even provide useful model interpretation and comparison in some circumstances. We

note that research on relevant topics would be of much interest and requires further explo-

ration.

To fully realize its potential and benefits, multi-model estimation/control for batteries needs to be

further studied in the future.

5. Application Examples

In this section, we present two examples using simulation and experiment data, respectively,

to evaluate theMM-AdaSoC algorithm.

Example 1. This example is based on simulation with a model used in [15] for a NiMH battery

system. For simulation purpose, we employ certain minor modification, but the obtained model is

still considered to be a sufficiently accurate representation of the NiMH battery dynamics in most

circumstances. The change of SoC is governed by

SoCk+1 = SoCk−
η ·∆T

C0
uk−

SD(Tref) ·∆T
100

,

where the third term on the right-hand side represents self-discharge with

SD(Tref) = k0exp

(
−

EA,S

RgTref

)
SoC.
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Here,k0 = 1.0683×107 per hour,EA,S/Rg = 6,789K, the current efficiencyη = 1 for discharging

and 0.99 for charging near 50% SoC, the nominal capacityC0= 1.25Ah, the reference temperature

T = 35◦C (308.15K), and the sampling period∆T = 1s. The initial SoC is assumed to be 50%.

The terminal voltage is equal to the OCV plus internal-resistance-induced drop, that is,

yk =Voc,k− R̄uk.

The OCVVoc is given by the following equation with the inclusion of voltage hysteresis:

Voc =U0+
RgTref

neF
ln

(
SoCk−Π
1−SoCk

)
+VH,k,

where the varying voltage hysteresisVH is characterized by an empirical expression

VH,k+1 =VH,k−β ·η ·
[
VH,max+sign(uk) ·VH,k

]
·∆T ·uk.

The resistancēR is described by

R̄=
n

∑
j=0

a jSoCj .

The Farady’s constantF = 96,487C mol−1, ne = 1, Rg = 8.314J mol−1 K−1, U0 = 1.37V, Π =

0.08,β = 3×10−5C−1, VH,max= 0.05V. The initialVH is 0.005V. In addition,a0 = 4.1252×10−2,

a1 = 8.9691×10−4, a2 = 1.6760×10−5, a3 =−1.4435×10−7 anda4 = 4.7223×10−10.

During the simulation, we do not assume that this model is fully available for SoC estimation.

Instead, the modified Nernst model presented in Section 3 will be used for approximate description

of the above true model. LetK0 = η ·∆T/C0, K1 =U0, K2 = K3 = RgTref/(neF), τ1 =−Π, τ2 = 0

andR= a0. The current signal applied as the input to the battery was a pseudo-random binary

sequence (PRBS) stretched by 100 times over the time axis. Its magnitude is 1A. A view of the

input current and output voltage during the first 2000 time instants is given in Fig. 3(a). Let the

true initial SoC be 55% and the initial SoC estimate be 65%. The initial weights assigned toM1

andM2 are 0.7 and 0.3, respectively.

In this setting, we face hysteresis, model mismatch and incorrect initial estimate, which to-

gether make SoC estimation a tougher challenge. As described in previous sections, we consider

two submodels, with the first one assuming knownK0 andK1 and the second assuming known

K1, K2 andK3. When theMM-AdaSoC algorithm is applied, Fig. 3(b) shows the estimation of

the SoC over time. We see that bothM1- andM2-based estimates differ from the actual values
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with bounded errors. However, it turns out that the overall estimates given by theMM-AdaSoC

algorithm become more accurate, demonstrating that the estimation errors can be reduced effec-

tively by fusion of the multi-model estimates. The weights of the two models are compared in

Fig. 3(c). Obviously,M2 weighs much more thanM1 in this case. This is becauseM1 is sensitive

to the initial SoC estimate, relying on the state equation based on Coulomb counting. Furthermore,

we also apply the well-known EKF to the modified Nernst model with knownKi for i = 0,1,2,3

for SoC estimation. As shown in Fig. 3(d), the EKF yields unreliable results in this situation in

comparison to theMM-AdaSoC algorithm.

Example 2. For the experimental evaluation of theMM-AdaSoC algorithm,data was collected

from a LiMn2O4/hard-carbon battery in the Advanced Technology R&D Center, Mitsubishi Elec-

tric Corporation. The experiment was conducted using a rechargeable battery test equipment pro-

duced by Fujitsu Telecom Networks.The current input was a PRBS signal stretched by 10 times

over the time axis with a magnitude of 5A. Despite many other options, we chose the PRBS be-

cause it has white-noise-like properties and is admissiblefor observability. The profile of the input

current and the output voltage is shown in Fig. 4. The batteryhas a nominal capacity of 4.93Ah.

The sampling period was 1s. During the experiment, the ambient temperature in the chamber was

maintained at 25.8◦C.

We consider the model in (10)-(11). The Coulombic efficiencyconstantK0 = 5.6342×10−5

whenuk > 0 (100% for discharging) andK0 = 4.7891×10−5 whenuk < 0 (85% for charging).

From the SoC-OCV data collected from this type of batteries,it can be determined thatK1= 1.294,

K2 = 0.0984,K3 = 3.972,τ1 = τ2 = 0.3.

As aforementioned, the actual values of the parametersKi for i = 0, · · · ,3 can change as a

result of the operating conditions. Hence, rather than depending fully on their nominal values,

we perform multi-model adaptive SoC estimation by applyingtheMM-AdaSoC algorithm. The

construction of two submodels from (10)-(11) is described in Section 3.1.

The SoC estimation results are shown in Fig. 5. The full view over the available experimental

data is given in Fig. 5(a). The initial SoC of the battery is known to be approximately 50%.

It is seen that there is a difference of approximately 5% between theM1-based andM2-based

estimates. Based on our experience,M1 tends to yield conservative estimates in this case andM2

does the opposite. TheMM-AdaSoC algorithm, through the fusion strategy, makes adjustment to

give neutralized overall estimates. Although the true SoC data are not available, we still judge that

the estimates are close to the truth, based on oura priori knowledge about the battery behavior.

Fig. 5(b) illustrates what happens during the initial 450s.It is seen from Figs. 5(a)-5(b) that the

overall estimates are closer to those based onM2. This is verified in Figs. 5(c)-5(d), where the
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weightµ1 for M1 fluctuates slightly around 0.63 andµ2 around 0.37. Thus, with a larger weight,

M1 is given more confidence thanM2 by theMM-AdaSoC algorithm during the implementation.

It is understood that the fusion depends on the performance of one-step-forward prediction of the

terminal voltage. Fig. 5(e) compares the measured data withthe prediction based onM1 andM2,

respectively. The prediction is satisfactory for both submodels, butM2 is observed to lead to the

better predicted voltage.

From the above results, we believe that theMM-AdaSoC algorithm is quite effective, supported

by the findings that the obtained SoC estimates exhibit considerable accuracy and that the voltage

prediction approximates the truth well.Through experiments with charging/discharging rates of

0.5A, 1A, 10A and 15A, we consistently observe similar estimation results, which shows that the

applicability of the model and the power of theMM-AdaSoC algorithm.

6. Conclusions

Development of adaptive approaches for SoC estimation is ofpractical significance, because

battery dynamics are often hard to fully determine and are time-varying. We are focused on im-

proving the adaptive SoC estimation via launching a multi-model strategy in this paper, motivated

by the proven success of multi-model estimation in addressing problems involving structural and

parameter changes.

The main contribution of this paper is the development and validation of theMM-AdaSoC

algorithm. It is built to estimate a battery’s SoC in real time through carrying out simultaneous

state and parameter estimation on a set of (sub)models. We first construct two submodels from

a general state-space battery model by fixing different parameters, with both shown to be locally

observable with admissible inputs. The well-known IEKF is then applied to each submodel to

produce the SoC and parameter estimates. The final overall estimates are generated by fusing

the submodel-based estimates, and it is shown that the fusion is a linear weighted combination of

the estimates. Simulation and experimental results are presented to demonstrate and validate the

effectiveness of the algorithm.

Apart from theMM-AdaSoC algorithm, we also emphasize the potential of the multi-model

framework for battery applications. The initial success reported in this paper would provide strong

incentives for further development of a wide range of methods based on multiple models to better

monitor the status and health of a battery.
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1: initialize the implementation:k= 0, x̂i
0|0 = xi

0, Pi
0|0 = δ i I , whereδ i ≫ 0, for i = 1,2

2: repeat
3: k← k+1

IEKF based adaptive SoC estimation:

4: for i = 1 to 2do
5: import the submodelMi

Mi -based prediction (time-update):

6: project the state ahead to obtainx̂i
k|k−1

x̂i
k|k−1 = f i(x̂i

k−1|k−1,uk−1)

7: project the error covariance ahead to obtainPi
k|k−1

Fi
k−1 =

∂ f i

∂xi

(
x̂i

k−1|k−1,uk

)
, Pi

k|k−1 = Fi
k−1Pi

k−1|k−1Fi ⊤
k−1+Qi

Mi -based update (measurement-update):

8: initialize the iteration procedure:ℓ= 0, x̂i(0)
k|k = x̂i

k|k−1
9: while ℓ < ℓmax do

10: ℓ← ℓ+1
11: compute the Kalman gain matrix

H i(ℓ)
k =

∂hi

∂xi

(
x̂i(ℓ)

k|k ,uk

)
, K i(ℓ)

k = Pi
k|k−1H i(ℓ−1)

k

[
H i(ℓ−1)

k Pi
k|k−1H i(ℓ−1)

k

⊤
+Ri

]−1

12: update the state estimate

x̂i(ℓ)
k|k = x̂i

k|k−1+K (ℓ)
k

[
yk−hi

(
x̂i(ℓ−1)

k|k ,uk

)
−H(ℓ−1)

k

(
x̂i

k|k−1− x̂i(ℓ−1)
k|k

)]

13: end while
14: assign̂xi

k|k = x̂i(ℓmax)
k|k

15: update the error covariance

Pk|k =
[
I −K (ℓmax)

k H(ℓmax)
k

]
Pk|k−1

16: exportMi -based SoC estimatêSoC
i
k = x̂i

k|k,1
17: end for

Estimation fusion

18: determine the probabilityπ i
k that the battery runs onMi for i = 1,2 with ∑2

i=1 π i
k = 1

19: for i = 1 to 2do
20: compute the initial weights

H i
k =

∂hi

∂xi

(
x̂i

k|k−1,uk

)
, Si

k = H i
kPi

k|k−1(H
i
k)
⊤+Ri

ŷi
k|k−1 = hi (x̂i

k|k−1,uk), ỹi
k|k−1 = yk− ŷi

k|k−1, wi
k = (2π)−

n
2 (Si

k)
− 1

2 exp

[
−
(ỹi

k)
2

2Si
k

]

21: end for
22: compute the normalized weights

µ i
k =

wi
kπ i

k

∑N
j=1 wj

kπ j
k

for i = 1,2

23: fuse the SoC estimates fromM1 andM2

ŜoCk =
2

∑
i=1

ŜoC
i
kµi

24: until SoC estimation task ends

Table 1: TheMM-AdaSoC algorithm: Adaptive SoC estimation using multiple models.

22



Battery dynamic process

Adaptive SoC estimator

Battery model

Current Voltage
SoC 

estimates

Parameter
estimates

Figure 1: A schematic description of adaptive SoC estimation.
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Figure 2: The structure of a multi-model estimator.
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Figure 3: (a) The input current-output voltage profile; (b) SoC estimates versus truth over time;
(c) fusion weights forM1 andM2 versus time; (d) comparison with the EKF.
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Figure 5: (a) SoC estimates versus time; (b) SoC estimates during the initial 450s; (c) fusion
weights forM1 andM2 versus time; (d) fusion weights during the initial 450s; (e)comparison
between the true and the one-step-forward predicted voltage.
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