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Nonlinear adaptive estimation of the state of charge for Lithium-ion

batteries

Yebin Wang, Huazhen Fang, Zafer Sahinoglu, Toshihiro Wada and Satoshi Hara

Abstract— This paper considers State of Charge (SoC) es-
timation of Lithium-ion battery. Different from various prior
art, where estimation is performed based on local linearization
of a nonlinear battery model, a nonlinear adaptive observer
is proposed to estimate the SoC and the parameters of a
simplified but nonlinear battery model. A major advantage
of the proposed approach is the possibility to establish the
exponential stability of the resultant error dynamics of state and
parameter estimation. Simulation validates the effectiveness of
the proposed approach.

I. INTRODUCTION

Lithium-ion (Li+) batteries have gained widespread use in
numerous applications from consumer electronics to power
tools since its commercialization, thanks to the higher ca-
pacity but reduced size, superior power performance but
longer cycle life [1]. Nowadays battery management systems
(BMSs) are used to monitor the battery status and regulate
the charging and discharging processes for real-time battery
protection and performance improvement [2], [3]. An ac-
curate state of charge (SoC) of the battery, usually defined
as the percentage ratio of the present battery capacity to the
maximum capacity, is a prerequisite to have a desirable BMS.

The SoC of an battery is difficult to measure, and its
accurate estimation is also known as a challenging task.
Two straightforward but typical SoC estimation methods are
voltage translation and Coulomb counting [3]. Both methods
have limitations such as the former requires the battery to
rest for a long period and cut off from the external circuit
to measure the Open Circuit Voltage (OCV), and the latter
suffers cumulative integration errors and noise corruption.
It is worth noting that both methods do not exploit explicit
battery models.

Recent efforts on the SoC estimation concentrate on
model-based approaches to improve accuracy. For instance,
equivalent circuit models (ECMs) and extended Kalman filter
(EKF) type of approaches have been used extensively to es-
timate the SoC with approximate dynamic error bounds [4],
[5], [6]. Other nonlinear observer design approaches have
also been used to construct ECM based nonlinear SoC esti-
mators, including sliding mode observer [7], adaptive model
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reference observer [8] and Lyapunov-based observer [9]
etc. The main disadvantage of ECMs-based estimation ap-
proaches is the lack of physical meaning of model parameters
thus may not be very useful for battery monitoring.

Another important type of battery models, which is gen-
erally in the form of nonlinear partial differential equations
(PDEs), are derived based on electrochemical principles
describing intercalation and diffusion of lithium ions and
conservation of charge within a battery. Such electrochemical
models have the merit of ensuring each model parameter to
retain a proper physical meaning; on the other hand, they
are difficult to handle and often necessitates model simplifi-
cation or reduction. A linear reduced-order electrochemical
model is established in [10], to which the classical KF
is employed for the SoC estimation. In [11], the EKF is
implemented to estimate the SoC via a nonlinear ordinary
differential equation (ODE) model obtained from PDEs by
finite-difference discretization. The unscented Kalman filter
(UKF) is used in [12] to avoid model linearization for
more accurate SoC estimation. Rather than using the ODE
model after simplification, nonlinear SoC estimators are also
developed in [13], [14] through direct manipulation of PDEs.

Adaptive SoC estimation, which enables the SoC to be
estimated when the model parameters are unavailable, has
been discussed for some ECMs and electrochemical models,
e.g., [6], [15], [16]. This paper makes new contributions to
study of this topic, with the aim of developing an nonlinear
adaptive SoC estimator with guaranteed convergence.

II. A REDUCED-COMPLEXITY MODEL

In this section, the working mechanism of Li+ batteries
is briefly introduced. Then a review of the electrochemical
principles based single particle model (SPM) is presented,
followed by appropriate model simplification for the purpose
of the SoC estimation.

A. The Working Mechanism of Li+ Batteries

A schematic visualization of a Li+ battery is presented
in Fig 1(a). The positive electrode is typically made from
Li compounds, e.g., LixMn2O4 and LixCoO2. Small solid
particles of the compounds are compressed to form a porous
structure. Similarly, the negative electrode, usually contain-
ing graphite particles, is also porous. The interstitial pores
at both electrodes provide intercalation space, where the Li+

can be moved in and out and stored. The electrolyte contains
free ions and is electrically conductive, where the Li+ can
be transported easily. The separator separates the electrodes
apart. It allows the exchange of Li+ from one side to the
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Fig. 1. Schematic characterization of battery dynamics: (a) the battery
charging process; (b) the single-particle model.

other, but prevents electrons from passing through. Electrons
are thus forced to flow through the external circuit.

When the battery is being charged, Li+ are extracted from
particles at the positive electrode into the electrolyte, driven
by reaction at the particle/electrolyte interface, and particles
at the negative electrode absorbs Li+ from the electrolyte.
This process not only generates an influx of Li+ within the
battery, but also builds up a potential difference between the
positive and negative electrodes. When it is reversed, the
battery is discharging. The chemical reactions in the positive
and negative electrodes are, respectively, described by

LixMn2O4

charge
−−−−−⇀↽−−−−−

discharge
Lix− yMn2O4 + yLi++ ye−

xLi++ xe−+C
charge

−−−−−⇀↽−−−−−
discharge

LixC

B. The Single Particle Model

The single particle model (SPM) simplifies each electrode
as a spherical particle with area equivalent to the active area
of the electrode [17], [18]. Thus dynamics of Li+ in the
electrolyte phase are ignored. Although unable to capture
all electrochemical processes in batteries, the SPM reduces
complexities in identification, estimation and control design
to a large extent [11], [14]. To proceed further, a review of the
SPM is provided, with the nomenclature shown in Table I.
Input and output of the battery: The external input to the

battery is the current I(t) with I(t)< 0 for charge and I(t)> 0
for discharge. The terminal voltage is the potential difference

Variables
Φs electric potential in the solid electrode
Φe electric potential in the electrolyte
cs concentration of Li+ in the solid electrode
css concentration of Li+ at a particle’s spherical surface
J molar flux of Li+ at the particle’s surface
J0 exchange current density
η overpotential of reaction in the cell
U open-circuit potential
I external circuit current
V terminal voltage

Physical parameters

Ds diffusion coefficient of Li+ in the solid electrode
r̄ radius of the spherical particle
F Farady’s constant
S specific interfacial area
T temperature of the cell
αa anodic charge transport coefficient
αc cathodic charge transport coefficient
R universal gas constant
Rc phase resistance
R f film resistance of the solid electrolyte interphase

Subscripts

s solid electrode phase
e electrolyte phase
n negative electrode
p positive electrode
j n or p

TABLE I

DEFINITIONS AND NOMENCLATURE.

between the two electrodes, that is,

V (t) = Φs,p(t)−Φs,n(t). (1)

Conservation of Li+ in the electrode phase: The migration
of Li+ inside a particle is caused by the gradient-induced
diffusion. It follows from the Fick’s laws of diffusion that

∂cs, j(r, t)

∂ t
=

1
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∂
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∂ r
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, (2)

with the initial and boundary conditions given by
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0
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It is noted that J j is the molar flux at the electrode/electrolyte
interface of a single particle. When j= n and p, respectively,

Jn(t) =
I(t)

FSn
, Jp(t) =−

I(t)

FSp
.

Electrochemical kinetics: The molar flux J j is governed
by the Butler-Volmer equation:

J j(t) =
J0, j

F

[

exp

(

αaF

RT
η j(t)

)

− exp

(

−
αcF

RT
η j(t)

)]

, (3)

where η j(t) = Φs, j(t) − Φe, j(t)−U(css, j(t)) − FR f , jJ j(t).
The electrolyte phase can be represented by a resistor Rc, j
in the SPM, implying Φc, j can be expressed as Φe, j(t) =
Rc, jI(t). Hence, η j becomes

η j(t) = Φs, j(t)−U(css, j(t))−FR̄ jJ j(t), (4)

where R̄ j = Rc, j+R f , j.



The SPM is represented by (1)-(3), in which I is the
external excitation input, cs, j and Φs, j are the variables
showing the battery status, and V is the model output.

C. The Reduced Complexity Model

Average Li+ concentration in the electrode phase:

Throughout the paper the average concentration of Li+ in the
particle is considered as the measure of the present battery
capacity, or equivalently, the SoC. For an electrode particle,
it is defined as

c
avg
s, j (t) =

1

Ω

∫

Ω
cs, j(r, t)dΩ, (5)

where Ω denotes the volume of the particle sphere. From (2),
it is obtained that

ċ
avg
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1
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Ω
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∣

∣
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r=r̄ j
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where ε j is a constant coefficient. Depending on the electrode
polarity, (6) splits into

ċavg
s,n (t) =−

εn
FSn

I(t), (7)

ċavg
s,p (t) =

εp
FSp

I(t). (8)

It is noted from (7)-(8) that the rate of change of c
avg
s, j is

linearly proportional to the input current I. In other words,
c

avg
s, j is equal to the initial value c

avg
s, j (0) plus integration of

I over time. This illustrates that the change of SoC depends
linearly on I as a result of c

avg
s, j indicating SoC. Such a

relationship has not only been presented for electrochemical
models, e.g., [10], but has also been justified in ECMs,
e.g., [5], [19] and the references therein.
Terminal voltage: Suppose there exists a function ϕ such

that css, j(t) = ϕ(cavg
s, j (t)) and define Ū =U ◦ϕ , where ‘◦’ de-

notes composition of two functions. Using (4), (1) becomes

V (t)= Ū(cavg
s,p (t))−Ū(c

avg
s,n (t))+ηp(t)−ηn(t)+(R̄p−R̄n)I(t).

With αa = αc = 0.5, it follows from (3) that

ηn(t) =
2RT

F
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(

Jn(t)F

2J0,n

)

=
2RT

F
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(
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2J0,n

)

,
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2RT

F
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Jp(t)F

2J0,p

)

=
2RT

F
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(

−
εpI(t)

2J0,p

)

.

Thus V (t) becomes

V (t) = Ū(cavg
s,p )−Ū(c

avg
s,n )

+
2RT

F

[

sinh−1

(

−
εpI(t)

2J0,p

)

− sinh−1

(

εnI(t)

2J0,n

)]

+(R̄p− R̄n)I(t). (9)

As such, V (t) consists of two parts. The first is the open-
circuit voltage (OCV) that relies on Ū(c

avg
s, j ), and the second

is the direct feedthrough from I to V .

System (7)-(9) provides a concise characterization of the
battery dynamics. As aforementioned, c

avg
s, j is arguably equiv-

alent to the SoC. Denoting the SoC by a state x ∈ [0,1], and
defining the input u and the output y of the model as the
charge current I and the terminal voltage V of the battery,
respectively, we have the battery model as follows

ẋ(t) =−αu,

y(t) = h(x)+ g(u),
(10)

where α is a positive parameter, h(·), the part containing Ū
in (9), takes the parametric form of h(x) = β0 ln(x+ β1)+
β2, and g(·) corresponding to the part involving I in (9)
are expressed as g(u)= γ0

[

sinh−1(γ1u)− sinh−1(γ2u)
]

+γ3u,
where γi for i= 0,1,2,3 are from (9).

III. MAIN RESULTS

A two-stage approach will be used:

• Stage 1: As h(·) represents the OCV, it is determined
using the SoC-OCV data set to identify parameters βi.

• Stage 2: After h(·) is obtained, the state x, and param-
eters α,γi’s are estimated simultaneously.

The identification in Stage 1 can be formulated as a nonlinear
least squares data fitting problem, which can be easily
addressed by numerical methods such as Gauss-Newton.
The interested reader is referred to [20] for further details.
Parameters βi are treated as known in Stage 2, where the
state and parameter estimation is performed based on [21].

The proposed adaptive observer design in [21] requires the
plant in a normal form as follows

ż= Az+ϕ(z,u,θ ),

y=Cz,
(11)

where (A,C) is in Brunovsky observer form, z ∈ R
n is

the state vector, θ ∈ R
m is the unknown parameter vector,

u∈R
s is the input vector, and ϕ(z,u,θ ) has certain triangular

dependence on z to enable high gain observer design [22],
[23]. Given the plant in the form (11), work [21] also make
four assumptions to enable the adaptive observer design.
For completeness of this paper, we recite three assumptions
(persistent excitation assumption is excluded) as follows.
Assumption 3.1: [21, Assum. (A1)] The state z(t), the

control u(t) and the unknown parameters θ are bounded, i.e.,
z(t) ∈ Z,u(t) ∈U for t ≥ 0 and θ ∈ Ω where Z ∈ Rn,U ∈ Rs

and Ω ∈ R
m.

Assumption 3.2: [21, Assum. (A2’)] The function
ϕ(z,u,θ ) is Lipschitz with respect to z and θ , uniformly in
u where (z,u,θ ) ∈ Z×U .
Assumption 3.3: [21, Assum. (A3’)] The nonlinear pa-

rameterization function ϕ(z,u, ·) is one to one from R
m into

R
m.
System (10) is clearly not in the form (11) because the out-

put is not a linear function of z, thus a state transformation is
needed to put (10) into (11). To simplify the transformation,
we assume g(u) in system (10) has a linear parametrization.
Specifically, we consider the following system

ẋ= αu,

y= β1 log(x+β2)+β3 + γ1u,
(12)



where x is the SoC of a battery, βi are known parameters,
and γ1,α are unknown parameters.

Putting (10) into (11) requires the following parameter
dependent transformation

ξ (x,u,γ1) = β1 log(x+β2)+β3+ γ1u, (13)

where ξ is the new state variable. We have

ξ̇ = β1
α

x+β2
u+ γ1u̇,

where x+β2 is a function of y,u,γ1 and solved as

x+β2 = exp

(

y−β3− γ1u

β1

)

We rearrange the transformed system and have

ξ̇ = ϕ(y,u,γ,α)+ γ1u̇,

y= ξ ,
(14)

where

φ(·) = β1α exp

(

β3 + γ1u− y

β1

)

u.

Remark 3.4: The SoC, represented by x, is always pos-
itive, also x+ β2 has to be positive if the model (12) is
valid. One can verify that the state transformation (13) is
a diffeomorphism over x ∈ R

+, i.e., the state transformation
(13) is well-defined in the domain where the model (12) is
physically meaningful.

The transformed system (14) is in the form of (11), where

ϕ(y,u, u̇,γ1,α) = β1α exp

(

β3 + γ1u− y

β1

)

u+ γ1u̇.

The transformed system (14) is nonlinearly parameterized.
Clearly the state ξ , representing the OCV, external current
input u, and model parameters γ1,α are bounded in a
compact set D . Assumption [21, Assum. (A1)] is satisfied.
Given u, u̇,y are bounded by a compact set D , the smooth
function ϕ is Lipschitz w.r.t. ξ ,γ1,α and uniformly in u, u̇,y.
Assumption [21, Assum. (A2’)] is also satisfied. Assumption
[21, Assum. (A3’)] is however not satisfied because given
fixed (ξ ,u, u̇,y), one can easily find two sets of param-
eters (α1,γ1

1 ) and (α2,γ2
1 ) such that ϕ(ξ ,u, u̇,y,α1,γ1

1 ) =
ϕ(ξ ,u, u̇,y,α2,γ2

1 ).
Notice that Assumption [21, Assum. (A3’)] is not ex-

plicitly used to show the convergence, and the proof of
Theorem [21, Thm. 4.2] merely relies on Assumptions
(A1’),(A2’),(A4’). We may still be able to have a stable
adaptive observer as long as Assumption [21, Assum. (A4’)]
is verified.

We consider the following system

˙̂
ξ = θ (y− ŷ)+ ϕ̂ +θϒ ˙̂ρ ,

ϒ̇ =−θϒ+
∂ ϕ̂

∂ ρ̂
,

˙̂ρ = θPϒT (y− ŷ),

Ṗ=−θPϒTϒP+θP,

(15)

where ρ = [α,γ1]
T , ρ̂ = [α̂ , γ̂1]

T , ϕ̂ = ϕ(ξ̂ , α̂ ,u) and θ is a
sufficiently large positive constant.

Assumption [21, Assum. (A4’)], restricted to system (14),
is written as follows

Assumption 3.5: The input u is such that for any trajectory
of system (15), ϒ(t) are persistently exciting i.e., , there exist
δ1,δ2,T > 0, for any t ≥ 0, the following inequalities hold

δ1I2 ≤
∫ t+T

t
ϒT (t)ϒ(t)dτ ≤ δ2I2, (16)

where I2 is the 2× 2 identity matrix.

Next we verify that Assumption 3.5 may still hold for
(15) even Assumption [21, Assum. (A3’)] is not satisfied.
The ϒ-dynamics is excited by the following input

∂ ϕ̂

∂ ρ̂
=
[

β1 exp(β3+γ̂1u−y
β1

)u α̂ exp(β3+γ̂1u−y
β1

)u2 + u̇
]

Given θ a sufficiently large positive constant, we have the

approximation ϒ ≈ ∂ ϕ̂
∂ ρ̂ . Hence, (16) is approximated by

δ1I2 ≤

∫ t+T

t







(

∂ ϕ̂
∂ α̂

)2
∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

(

∂ ϕ̂
∂ γ̂1

)2






dt

=







∫ t+T
t

(

∂ ϕ̂
∂ α̂

)2
dt

∫ t+T
t

∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

dt

∫ t+T
t

∂ ϕ̂
∂ α̂

∂ ϕ̂
∂ γ̂1

dt
∫ t+T
t

(

∂ ϕ̂
∂ γ̂1

)2
dt






≤ δ2I2

Since any two square-integrable real-valued functions χ1 and
χ2 on an interval [a,b] have an inner product

〈χ1,χ2〉=

∫ b

a
χ1(t)χ2(t)dt,

if assuming ∂ ϕ̂/∂α̂ and ∂ ϕ̂/∂ γ̂1 are integrable over [t, t+T ]
for any t ≥ 0, we rewrite (16) as follows

δ1I2 ≤

[

〈 ∂ ϕ̂
∂ α̂ ,

∂ ϕ̂
∂ α̂ 〉 〈 ∂ ϕ̂

∂ α̂ ,
∂ ϕ̂
∂ γ̂1

〉

〈 ∂ ϕ̂
∂ α̂ ,

∂ ϕ̂
∂ γ̂1

〉 〈 ∂ ϕ̂
∂ γ̂1

, ∂ ϕ̂
∂ γ̂1

〉

]

≤ δ2I2 (17)

We can further verify that the space consisting of all inte-
grable functions over [t, t+T ] for any t ≥ 0 is a pre-Hilbert
space and the inner product is a norm of the space, thus the
Cauchy-Schwarz inequality holds. Denoting

‖χ‖2 = 〈χ ,χ〉=
∫ t+T

t
χ2(t)dt,

we have

〈
∂ ϕ̂

∂ α̂
,

∂ ϕ̂

∂ γ̂1
〉=

∥

∥

∥

∥

∂ ϕ̂

∂ α̂

∂ ϕ̂

∂ γ̂1

∥

∥

∥

∥

≤

∥

∥

∥

∥

∂ ϕ̂

∂ α̂

∥

∥

∥

∥

×

∥

∥

∥

∥

∂ ϕ̂

∂ γ̂1

∥

∥

∥

∥

.

That is to say, given ‖∂ ϕ̂/∂α̂‖ and ‖∂ ϕ̂/∂ γ̂1‖ nonzero, the
matrix in (17) is not positive definite if and only if ∀t ≥ 0,

∂ ϕ̂(τ)

∂α̂
= k

∂ ϕ̂(τ)

∂ γ̂1
, ∀k ∈ R, τ ∈ [t, t+T ].

We have the following result on the adaptive observer
design for system (14). Proof of Proposition 3.6 is omitted
due to its similarity to that of [21, Thm. 4.2].



Proposition 3.6: Provided that Assumption 3.5 holds, (15)
is an adaptive observer of system (12), where θ > 0 is a
sufficiently large positive constant.

Remark 3.7: Given Assumption 3.5, the adaptive observer
(15) yields an error dynamics of the state and parameter
estimation exponentially convergent as long as the initial
conditions of adaptive observer (15) and the system (14)
belong to the compact set D . The exponential stability of
the error dynamics also implies certain robustness.

Remark 3.8: The fact that [21, Assum. (A3’)] does not
hold for the transformed system (14) partially justifies the
use of the two-stage approach for joint state and parameter
estimation. For the one-stage approach where βi are unknown
parameters as well, [21, Assum. (A3’)] and the PEC [21,
Assum. (A4’)] is much more difficult to satisfy.

IV. A NUMERICAL EXAMPLE

Consider the model in (10) and assume that there is
no mismatch between the model and the true system. The
parameters are given as follows: α = 4.7496× 10−5, β1 =
1.0480, β2 = 0.2208, β3 = 3.9998, γ1 = −5× 10−3. Here,
the values of α and γ1 are reckoned according to [17], [18],
[24] and may have little applicability to a specific battery.
The values of βi’s are determined by fitting the SoC-OCV
data of the battery by experiments. The input to the model
is a sinusoid wave u= 10sin(10t). We take θ = 20 and the
following initial conditions (ICs)

ξ (0) = 0.5; ξ̂ (0) = 0;

ϒ(0) = (0,0), ρ̂(0) = (0,0)T , P(0) = I2.
(18)

Simulation results are given in Figures 2 - 4, which show that
adaptive observer (15) can provide convergent estimation of
the transformed system state and parameters. This further
implies the state of the original system (12), or the SoC, can
also be estimated asymptotically. Simulation also shows that
the error dynamics of the state estimation converges much
faster than that of the parameter estimation.
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Fig. 2. The transformed system state ξ and its estimation ξ̂

We also verify by simulation that the adaptive observer
provides convergent estimation of the SoC and parameters
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over a fairly large domain. Given the same input to the
model and θ , the adaptive observer (15) is simulated with
the following initial conditions (ICs)

ξ (0) = 4; ξ̂ (0) = 100;

ϒ(0) = (0,0), ρ̂(0) = (0,0)T , P(0) = I2.
(19)

Simulation results are given in Figures 5 - 7. The estimation
error with ICs (19) takes more time to converge than that
with ICs (18), but still converges to the true values. Given the
ICs (19), extended kalman filter (EKF) or iterated EKF [25]
could not provide convergent estimation of the SoC and
parameters.

V. CONCLUSION

This paper considered the State of Charge (SoC) estima-
tion of Lithium-ion batteries. A nonlinear adaptive observer
was proposed to estimate the SoC and the parameters of a
simplified battery model. The resultant error dynamics of the
state parameter estimation is exponentially convergent pro-
vided that persistent excitation condition holds. Simulation
validated the effectiveness of the proposed approach.



REFERENCES

[1] Y. Nishi, “Lithium ion secondary batteries; past 10 years and the
future,” Journal of Power Sources, vol. 100, no. 1-2, pp. 101–106,
2001.

[2] N. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, “Al-
gorithms for advanced battery-management systems,” IEEE Control
Systems Magazine, vol. 30, no. 3, pp. 49–68, 2010.

0 10 20 30 40 50
−6

−4

−2

0

2
x 10

4

ξ
,
ξ̂

ξ

ξ̂

45 46 47 48 49 50
3.95

4

4.05

4.1

4.15

ξ
,
ξ̂

ξ

ξ̂

0 10 20 30 40 50
−2

0

2

4

6
x 10

4

Time (sec)

ξ
−

ξ̂

40 45 50
−2

−1

0

1

2
x 10

−11

Time (sec)

ξ
−

ξ̂

Fig. 5. The transformed system state ξ and its estimation ξ̂

0 20 40
−5

0

5

10

α
,
α̂

α
α̂

40 45 50
4.7496

4.7496

4.7496

4.7497

4.7497
x 10

−5

α
,
α̂

α
α̂

0 20 40
−10

−5

0

5

Time (sec)

α
−

α̂

40 45 50
−6

−4

−2

0
x 10

−10

Time (sec)

α
−

α̂

Fig. 6. Parameter α and its estimation α̂

0 10 20 30 40 50
−4

−3

−2

−1

0

γ
1
,
γ̂
1

γ1

γ̂1

40 45 50
−5

−5

−5

−5
x 10

−3

γ
1
,
γ̂
1

γ1

γ̂1

0 10 20 30 40 50
−2

0

2

4

Time (sec)

γ
1
−

γ̂
1

40 45 50
−1

0

1

2
x 10

−10

Time (sec)

γ
1
−

γ̂
1

Fig. 7. Parameter γ1 and its estimation γ̂1

[3] V. Pop, H. J. Bergveld, P. H. L. Notten, and P. P. L. Regtien, “State-of-
the-art of battery state-of-charge determination,” Measurement Science
and Technology, vol. 16, no. 12, pp. R93–R110, 2005.

[4] J. Chiasson and B. Vairamohan, “Estimating the state of charge of a
battery,” IEEE Transactions on Control Systems Technology, vol. 13,
no. 3, pp. 465–470, 2006.

[5] G. L. Plett, “Extended Kalman filtering for battery management
systems of LiPB-based HEV battery packs: Part 3. state and parameter
estimation,” Journal of Power Sources, vol. 134, no. 2, pp. 277–292,
2004.

[6] ——, “Sigma-point Kalman filtering for battery management systems
of LiPB-based HEV battery packs: Part 2: Simultaneous state and
parameter estimation,” Journal of Power Sources, vol. 161, no. 2, pp.
1369–1384, 2006.

[7] I.-S. Kim, “The novel state of charge estimation method for lithium
battery using sliding mode observer,” Journal of Power Sources, vol.
163, no. 1, pp. 584–590, 2006.

[8] M. Verbrugge and E. Tate, “Adaptive state of charge algorithm
for nickel metal hydride batteries including hysteresis phenomena,”
Journal of Power Sources, vol. 126, no. 1-2, pp. 236–249, 2004.

[9] Y. Hu and S. Yurkovich, “Battery cell state-of-charge estimation
using linear parameter varying system techniques,” Journal of Power
Sources, vol. 198, pp. 338–350, 2012.

[10] K. A. Smith, C. D. Rahn, and C.-Y. Wang, “Model-based electrochem-
ical estimation of lithium-ion batteries,” in Proc. IEEE International
Conference on Control Applications, 2008, pp. 714–719.

[11] D. Domenico, G. Di Fiengo, and A. Stefanopoulou, “Lithium-ion
battery state of charge estimation with a Kalman filter based on a
electrochemical model,” in Proc. IEEE International Conference on
Control Applications, 2008, pp. 702–707.

[12] S. Santhanagopalan and R. E. White, “State of charge estimation using
an unscented filter for high power lithium ion cells,” International
Journal of Energy Research, vol. 34, no. 2, pp. 152–163, 2010.

[13] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen,
and A. Kojic, “Electrochemical model based observer design for a
lithium-ion battery,” IEEE Transactions on Control Systems Technol-
ogy.

[14] S. J. Moura, N. A. Chaturvedi, and M. Krstic, “PDE estimation
techniques for advanced battery management systems - Part I: SOC
estimation,” in Proc. American Control Conference, 2012, pp. 559–
565.

[15] O. Barbarisi, F. Vasca, and L. Glielmo, “State of charge Kalman filter
estimator for automotive batteries,” Control Engineering Practice,
vol. 14, no. 3, pp. 267–275, 2006.

[16] M. McIntyre, T. Burg, D. Dawson, and B. Xian, “Adaptive state of
charge (SOC) estimator for a battery,” in Proc. American Control
Conference, 2006, pp. 5740–5744.

[17] S. Santhanagopalan, Q. Guo, P. Ramadass, and R. E. White, “Review
of models for predicting the cycling performance of lithium ion
batteries,” Journal of Power Sources, vol. 156, no. 2, pp. 620–628,
2006.

[18] M. Guo, G. Sikha, and R. E. White, “Single-particle model for a
lithium-ion cell: Thermal behavior,” Journal of The Electrochemical
Society, vol. 158, no. 2, pp. A122–A132, 2011.

[19] M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-
Charge determination from EMF voltage estimation: Using impedance,
terminal voltage, and current for lead-acid and lithium-ion batteries,”
IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2550–
2557, 2007.

[20] G. A. F. Seber and C. J. Wild, Nonlinear Regression. Wiley, 2003.
[21] M. Farza, M. M’Saad, T. Maatoug, and M. Kamoun, “Adaptive

observers for nonlinearly parameterized class of noninear systems,”
Automatica, vol. 45, no. 10, pp. 2292–2299, Oct. 2009.

[22] G. Bornard and H. Hammouri, “A high gain observer for a class of
uniformly observable systems,” in Proc. 30th CDC, Brighton, England,
1991, pp. 1494–1496.

[23] J. P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for
nonlinear systems – applications to bioreactors,” IEEE Trans. Automat.
Contr., vol. AC-37, no. 6, pp. 875–880, Jun. 1992.

[24] “Solid-state diffusion limitations on pulse operation of a lithium ion
cell for hybrid electric vehicles,” Journal of Power Sources, vol. 161,
no. 1, pp. 628–639, 2006.

[25] H. Fang, Y. Wang, Z. Sahinoglu, T. Wada, and S. Hara, “Adaptive
robust estimation of state of charge for lithium-ion batteries,” in Proc.
American Control Conference, Washington, DC, 2013, pp. 3491–3497.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2013-109.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


