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Abstract

We study the problem of predicting travel times for links (road segments) using floating car
data. We present four different methods for predicting travel times and discuss the differences
in predicting on congested and uncongested roads. We show that current travel time estimates
are mainly useful for prediction on links that get congested. Then we examine the problem of
predicting link travel times when no recent probe car data is available for estimating current
travel times. This is a serious problem that arises when using probe car data for prediction. Our
solution, which we call geospatial inference, uses floating car data from nearby links to predict
travel times on the desired link. We show that geospatial inference leads to improved travel time
estimates for congested links compared to standard methods.
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Predicting link travel times from floating car data

Michael Jones1, Yanfeng Geng2, Daniel Nikovski3, and Takahisa Hirata4

Abstract— We study the problem of predicting travel times
for links (road segments) using floating car data. We present
four different methods for predicting travel times and discuss
the differences in predicting on congested and uncongested
roads. We show that current travel time estimates are mainly
useful for prediction on links that get congested. Then we
examine the problem of predicting link travel times when
no recent probe car data is available for estimating current
travel times. This is a serious problem that arises when using
probe car data for prediction. Our solution, which we call
geospatial inference, uses floating car data from nearby links to
predict travel times on the desired link. We show that geospatial
inference leads to improved travel time estimates for congested
links compared to standard methods.

I. INTRODUCTION

Predicting car travel times along road segments is an
increasingly important component of today’s car navagation
systems. We explore the problem of predicting travel times
from floating car data (FCD). Floating car data are traces of
GPS positions from actual cars driving on a road network.
This is in contrast to the other major source of traffic data:
stationary sensors such as inductive loop detectors or video
cameras. These provide speed or flow estimates at regular
intervals for a particular section of a road. Whereas floating
car data provides speed or travel time estimates across the
entire road network, stationary sensors typically only provide
speed or flow estimates on highways or major roads. A major
disadvantage of floating car data is that, unlike data from
stationary sensors, the floating car data occur at irregular in-
tervals and are typically much less frequent for any particular
road segment. This means that, for a particular road segment,
there may not be any traces for a long period of time.
We propose a method for dealing with this problem called
geospatial inference. Before presenting the idea of geospatial
inference, we first present some results on predicting travel
times using our floating car data when a recent estimate of
travel time along a road segment is available. We look at two
standard techniques for predicting travel times as well as two
methods based on Support Vector Machine regression [19].
We find that the amount of congestion is the most important
factor for determining which method works best.
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II. RELATED WORK

To predict travel times, real travel time data is typically
measured and recorded in one of two ways: using stationary
observers or moving observers. Stationary observers include
loop detectors and video surveillance [7], which provide flow
or speed estimates at regular and frequent intervals. Moving
observers, involving floating cars or probe cars, are becoming
popular travel time collection methods since they can cover
almost any road segment as needed [17].

There have been numerous methods on predicting travel
times. They can be categorized into three groups: regres-
sion methods (such as linear regression [14], local linear
regression [16], nonliear regression [9], and Support Vector
Machine regression [20], etc), time series analysis methods
[1], [3], and Artificial Neural Network methods [8], [18].
Most of these methods are applied for short-term travel time
prediction (15 to 30 minutes), and use stationary observer
data. For example, Wu et al. [20] used Support Vector
Machine regression for predicting travel times as we do, but
their method relies on estimates of travel times at regular
intervals in the past and thus cannot be applied to FCD.

Recently an increasing number of studies use floating car
data to estimate traffic state and predict travel times [5], [12],
[13]. Most of the work still assumes that frequent floating
car data is available both on the link being predicted and on
immediately preceding and succeeding links (e.g., in a paper
by de Fabritiis et al. [6]). However, this assumption is often
violated since most of FCD is irregular and sparse due to
the limited number of probe cars.

To our knowledge, very few researchers have discussed
the situation where no recent floating car data exists for
estimation. We propose a geospatial inference method to deal
with such scenarios, which utilizes the data from geographi-
cally nearby links to predict the travel time of the designated
link. The work of Min et al. [10] also used information
from nearby links (spatial information) as well as temporal
information for the link to predict future travel times. Their
model is a spatio-temporal autoregressive model that relies
on speed and volume data for all links arriving at regular
intervals (every 5 minutes in their experiments). They do not
deal with the problem of predicting travel times when recent
estimates are not available. A geostatistical kriging model
was employed by Aultman-Hall and Du [2] to predict with
sparse GPS probe data, where they assumed that roads in a
small area could be traversed at almost the same speed. The
geospatial inference approach we propose does not rely on
this assumption. A similar kriging method is studied in [11]
to also deal with sparse floating car data. In their paper, the



kriging method is used to predict only long routes and not
to predict travel times on short links. Their kriging method
would most likely have large errors on short links.

The main characteristics of our work that differentiate it
from past work are

• the use of sparse floating car data,
• the ability to predict an arbitrary amount of time into

the future,
• and a method for making predictions even when no

recent floating car data exists for estimating a recent
travel time.

III. PREDICTING TRAVEL TIMES ON A LINK WHEN
RECENT FLOATING CAR DATA IS AVAILABLE

We have experimented with various methods for predicting
travel times on road segments (also called links) using
floating car data. Our floating car data is from actual vehicles
driving around the Kanagawa prefecture in Japan with a
GPS-based car navigation system. The data was provided
by Pioneer Corporation and collected by their Smartloop
system. The system records a trace of each trip driven in
the vehicle. A trace consists of a series of time stamps,
longitudes and latitudes recorded every 3 seconds. We have
floating car data for the Kanagawa prefecture from about 2
million trips over a period of time from March 2008 through
March 2011. From this data we can extract a set of trip
segments covering a particular link that consists of the start
date and time of the trip segment over the link and the time
to traverse the link (the travel time). This is the raw data
used to train a travel time predictor for a link.

Travel time prediction can be treated as a regression
problem which attempts to map a set of input variables for
a particular link to the travel time. The first question is what
the set of input variables should be. Clearly the current time
and current travel time estimate may be useful variables. In
addition the amount of time in the future to predict is needed
if we would like to control this variable when making a
prediction. Thus we propose learning a regression function
that takes as input the start time, t, an estimate of the travel
time, τt, at time t, and the amount of time in the future
to predict, ∆t. The output is the predicted travel time at
time t + ∆t, denoted τt+∆t. We choose to use Support
Vector Machine regression [19] with Gaussian kernels due
to its impressive accuracy on a range of regression prob-
lems. Briefly, a Support Vector Machine regression function
with Gaussian kernels is a linear combination of Gaussian
functions centered on a subset of the input vectors (called
support vectors). The learning algorithm finds an optimal set
of input vectors to use as centers (means) and an optimal
set of weights for the Gaussians. The resulting regression
function is

f(x) =

N∑
i=1

aiG(x; ci,Σi) (1)

where x is the input vector, ai is the weight of the ith
Gaussian, and G() is a Gaussian function with mean ci and
covariance Σi. More details can be found in [15]. We refer

to this method of predicting travel times as the 3-input SVM
method.

We will also try using a 1-input SVM method that takes the
prediction time, t+ ∆t, as the sole input and outputs τt+∆t.
By comparing this method with the 3-input SVM method,
we can evaluate the importance of past travel time estimates
(from floating car data) for predicting future travel times.

We also look at two standard methods of predicting travel
times: historical profiles and the current travel time. The
historical profile method creates a table of average travel
times at different times of day for a particular link given
historical travel time data. The table contains the average
travel time for each interval of time during the day. We
chose 192 bins for our table which corresponds to a bin
for every 7.5 minutes during the day. One would expect this
method to become less accurate during times of unexpected
congestion or unusually high congestion when travel times
differ from their historical values. Our experiments show that
this is indeed the case.

The current travel time method simply uses the estimate
of the current travel time as the prediction for future travel
times on a link. One would expect this method to become
less accurate the further in the future one attempts to predict.

A. Experiments on congested and uncongested links

To evaluate different methods for travel time prediction,
we extracted travel time data for various links from our large
set of floating car data. We manually defined 4 highway links
from different areas of Kanagawa prefecture. These highway
links were chosen because they tend to get congested.
The four highway links are labeled Link 2, 5, 8, and 11.
(The reason for this numbering will become clear when we
introduce other nearby links in the experiments on geospatial
inference.) We also choose two non-highway links which
rarely get congested in order to test the various methods
under uncongested conditions as well. These links are labeled
Link 13 and 14.

1) Travel time data for the links used in our experiments:
Each of the links used for testing has average travel times of
around 1 or 2 minutes. The amount of data extracted for each
link is about 32,000 different trips for the highway links and
11,000 different trips for the non-highway links over all three
years of our data. Figures 1 through 3 show plots of time
of day versus travel time for all data extracted for each link.
We should note that because points in these plots overlap, an
accurate picture of the density of points in different regions
is lacking. Link 2 clearly shows that congestion often occurs
around 8am and rarely at other times. Link 5 shows two
times of frequent congestion at about 11am and 5pm. Link 8
shows congestion often occurring from about 8am all the way
through 11pm or midnight. Link 11 shows some congestion
occurring around 7pm and occasionally at other times. For
the non-highway links, Link 13 shows very few trips with
congestion although on the rare cases where congestion does
occur it is most often around 8am. Link 14 shows a wide
variation of travel times (mostly due to this link including



a traffic light) and only occasionally more congestion in the
late morning to early afternoon.

It is also interesting to look at the variations in travel
times for a single day. This is shown for two links in Figure
4. These plots show that travel times can change quickly.
This is often due to differences among drivers (fast drivers
versus slow drivers) and not necessarily due to changes in
congestion level.

Fig. 1. Time of the day versus travel time for Links 2 and 5 across all days
in the data set. Each trip in the data set that traverses the link is represented
by a single dot in the graph.

2) When are recent travel time estimates useful for pre-
dicting future travel times?: If a link is congested at time
t1 then it is likely to also be congested at time t2 where t1
and t2 are close in time. This implies that the travel time
for a congested link at time t1 is a good predictor of the
travel time at time t2. However, if a link is not congested,
then the (relatively small) changes in travel time from one
car to the next tend to be less predictable. In this case, recent
travel times are not necessarily a bad predictor of future
travel times, but a better predictor is the historical average
travel time. An illustration helps to make this point clearer.
Figure 5 shows plots of travel times at two times t1 and
t2 where t1 and t2 are within 15 minutes of each other.
If the travel time at t1 is a good predictor for the travel
time at t2 then we would expect the points in this plot to

Fig. 2. Time of the day versus travel time for Links 8 and 11 across
all days in the data set. Each trip in the data set that traverses the link is
represented by a single dot in the graph.

fall roughly along the τ1 = τ2 line (where τ1 and τ2 are
the travel times at start times t1 and t2, respectively). For
Links 2 and 5 this is roughly true. For links 8 and 11 shown
in Figure 6 there is some correlation between nearby travel
times but it is not as strong. For links 13 and 14 shown in
Figure 7 there is very little correlation. Link 14, especially,
shows that the travel time at t1 has no ability to predict the
travel time at a nearby start time t2. In general, we have
observed that knowing the recent travel time for a link is
only helpful for predicting future travel times for that link if
the link has frequent congestion. This is discussed further in
the description of our experiments.

B. Description of results

For each of the 6 links used for testing (4 with significant
congestion and 2 without), the floating car data extracted for
each link was converted into training and testing examples
for travel time prediction. A training example consists of
3 inputs and 1 output as follows: (ti, τti ,∆ti) → τti+∆ti

where ti is the start time of the car entering the link, τti is
an estimate of the travel time over the link at time ti, ∆ti
is the amount of time in the future to predict, and τti+∆ti is
the observed travel time over the link at time ti + ∆ti.



Fig. 3. Time of the day versus travel time for Links 13 and 14 across
all days in the data set. Each trip in the data set that traverses the link is
represented by a single dot in the graph.

The examples for each link were split into training and
testing sets. For the testing sets, we wanted to ensure that
there were plenty of examples occuring during congested
periods (if congestion occurred at all). To do this we choose
as testing days, only days containing at least one trip with
a travel time greater than the mean travel time plus two
standard deviations for that link. All trips on the chosen
testing days were included in the testing data which means
that plenty of uncongested trips were included as well. Using
this method, about 6% of the total trips over a link were
included as testing data and the remainder used as training
data. While this results in a test set that is skewed toward trips
during congested periods, we argue that this is the interesting
and important part of the data to test on. As discussed before,
our experiments showed that it is only during congested
periods that estimates of current travel times are helpful
for prediction. Thus, if almost all of the test data is taken
from uncongested periods then prediction based solely on
historical data will perform as well as any technique.

To create 3-input examples as described above, we need
to decide on a range for ∆ti. How far into the future can
we hope to reliably predict? This choice also influences the
type of predictor that is best. The larger ∆ti is, the less

Fig. 4. Time of the day versus travel time for Links 2 and 5 for a single day.
The plots show that travel times can change erratically over small periods
of time.

the estimate of the current travel time helps to predict future
travel times for congested links. To determine how large ∆ti
can be before the current travel time estimate is no longer
predictive of future travel times, we trained a 3-input SVM
for Link 2 (which has congestion) and Link 14 (which does
not have congestion). Then we plotted the error on the test
set versus ∆ti to see how the error varies with ∆ti. Figure 8
shows the results. For error we are using relative mean error
(RME) which is defined as

RME =
1

N

N∑
i=1

∣∣∣∣ (τi − f(xi))

τi

∣∣∣∣ (2)

where τi is the ground truth travel time, f(xi)) is the
predicted travel time given the input vector xi, and N is
the number of testing examples.

For the sometimes congested Link 2, we see that the error
increases with increasing ∆ti until ∆ti gets to around 1
hour. After that it levels off. For the rarely congested Link
14, the error does not seem to be dependent on ∆ti which
confirms our earlier conclusion about uncongested links not
being dependent on current travel time estimates. Given this
experiment, we decided to choose ∆t to be from 0 to 2 hours.
For larger ∆t’s, the current travel time estimate will not be



Fig. 5. Travel time at start time t1 versus travel time at start time t2 for
two trips within 15 minutes of each other (i.e. |t1 − t2| < 15 min) for
Links 2 and 5. If travel times change smoothly over time then points will
be clustered around the x = y line. Links that do not get congested usually
display very little correlation between nearby travel times.

helpful for predicting future travel times, in which case a
predictor such as historical profiles or 1-input SVM which
does not use current travel time estimates for prediction
should be used.

To train a 3-input SVM regression function, the training
examples were exactly as specified above. The LIBSVM
library [4] was used to train an SVM with Gaussian kernels.

For a 1-input SVM regression function, the training ex-
amples consisted only of start time ti and output travel time
τti . An SVM using Gaussian kernels was trained.

For an historical profile predictor, a table with bins for
every 7.5 minutes was populated by averaging the travel
times τti that fell into each bin according to start time ti.

For a current travel time predictor, no training is used. This
predictor predicts τti for a test example with target output
τti+∆ti .

The results on the testing data for each of these methods
is shown in Table I. The 3-input SVM has the lowest error
for 4 out of 6 of the links. For the 4 links with congestion,
it is best on all but Link 11. From Figures 2 (bottom) and 6
(bottom) we can see that while Link 11 does get congested

Fig. 6. Travel time versus travel time for trips that are within 15 minutes
of each other on Links 8 and 11.

occasionally, it has less congestion than Links 2, 5, and
8. As we noted before, links without a lot of congestion
do not benefit from using recent travel time estimates in
their prediction function. The results on Link 11 are further
evidence of that.

For Links 13 and 14 in which there is very little con-
gestion, 3-input SVM, 1-input SVM and historical profile
predictors all perform fairly closely.

One might also wonder why a 1-input SVM usually
performs better than the historical profile prediction. They
both take only the time to predict as input. The reason is
most likely that the 1-input SVM finds an optimal placement
of Gaussians along the start time line. One can think of the
Gaussians as equivalent to the bins of the historical profile.
For the historical profile predictor, the bins are fixed. For
the 1-input SVM the bins (Gaussians) are learned from the
training data. This optimization of the Gaussian positions
leads to an improvement over the fixed bins of the historical
profile predictor.

IV. GEOSPATIAL INFERENCE

One major problem with applying the 3-input SVM re-
gression method for travel time prediction in a real routing
system that uses continuously arriving floating car data is



Fig. 7. Travel time versus travel time for trips that are within 15 minutes
of each other on Links 13 and 14.

Historical Current travel
Link 3-input SVM 1-input SVM profile time

2 16.73% 19.62% 17.26% 28.63%
5 18.91% 20.79% 23.24% 30.17%
8 20.05% 22.16% 27.55% 32.02%

11 14.75% 14.62% 17.06% 27.41%
13 24.35% 24.67% 25.73% 55.88%
14 43.27% 42.80% 41.92% 56.70%

TABLE I
COMPARISON OF TRAVEL TIME PREDICTION USING VARIOUS METHODS

ON DIFFERENT LINKS. RELATIVE MEAN ERRORS (RME) ARE GIVEN IN

THE TABLE.

that it requires a recent estimate of the travel time for each
link. This is a problem for any method that uses recent travel
time as an input variable - not just SVMs. Floating car data is
often sparse on a particular link especially for links on non-
major roads. For many periods of the day there may not be
any recent floating car data on a particular link. The severity
of this problem depends on the number of probe cars in
the region, but until car navigation systems that report their
position saturate the market, this problem seems likely to be
very serious.

We propose a solution to this problem called geospatial

Fig. 8. RME versus ∆ti (amount of time in the future to predict) for
Links 2 (top) and 14 (bottom).

inference. The basic idea is to predict the travel time on
a link using data from nearby links. This means the future
travel time on a link is predicted using the estimated travel
times (from floating car data) of nearby links when there
is no recent floating car data available on the link. The
assumption is that if a certain link is congested then nearby
links are likely to be congested as well. It is possible to use
training floating car data to learn which pairs of links are
well correlated in the sense that travel times on one link are
predictable from the other.

A. Details of Main Idea

We have tested the idea of geospatial inference using the
four highway links used in the previous experiments along
with two new highway links near each one of the four old
links. The configuration of each of the four sets of three links
is shown in Figures 9, 10, 11, and 12.

From our data we create a set of training examples of the
form

(t, τ
Lj

t ,∆t)→ τLi

t+∆t (3)

where t is the current time, τLj

t is the ground truth travel
time on link Lj at time t, ∆t is the amount of time in the



Fig. 9. First set of links used in geospatial inference experiments

Fig. 10. Second set of links used in geospatial inference experiments

Fig. 11. Third set of links used in geospatial inference experiments

Fig. 12. Fourth set of links used in geospatial inference experiments

future to predict and τLi

t+∆t is the ground truth travel time
on link Li at time t+ ∆t.

From examples of this form for links Lj near Li, we train
an SVM regression function fLiLj

:

fLiLj
(t, τ

Lj

t ,∆t) = τLi

t+∆t. (4)

which predicts the travel time on link Li from link Lj .
Given a set of such predictions from nearby links Lj , a

final prediction is made using a weighted average:

τ̂Li

t+∆t =

N∑
j=1

wjfLiLj (t, τ
Lj

t ,∆t) (5)

where τ̂Li

t+∆t is the predicted travel time for link Li at time
t+ ∆t.

B. Experiments

This framework was used to train 3-input SVM regression
functions to predict Link 2 from Links 1 and 3, to predict
Link 5 from Links 4 and 6, to predict Link 8 from Links 7
and 9 and to predict Link 11 from Links 10 and 12. Training
and testing examples were created by finding all trips over
Link 1 (for example) that occurred up to 2 hours before
a trip on Link 2. A separate set of testing examples were
created for predicting Link 2 from Link 1 and for predicting
Link 2 from Link 3. The two trained SVM predictors, fL2L1

and fL2L3
, made predictions separately on their respective

testing sets. For any pair of testing examples in the two sets
which corresponded to the same target travel time and for
which the start times were within 5 minutes of each other,
the two output predictions were averaged together to get a
final travel time prediction. All other testing examples used
the prediction from just one of the SVM predictors as its
final prediction. The former case corresponds to both nearby
links having recent travel time estimates at about the same
time so that the SVM predictors for both links can be used
and averaged. The later case corresponds to only one of the
nearby links having a recent travel time estimate available.

Travel time prediction using geospatial inference is com-
pared against 1-input SVM and historical profile predictors
since these do not need recent travel time estimates and so



can also be used when such estimates are not available. These
baseline methods were trained and tested on the same train-
ing and testing data as was used for the geospatial inference
method (except the travel time estimates from neighboring
links were not used). Note that the testing examples used
are different from those used in our previous experiments in
Section III. Although we used the same testing days as before
(which all have at least one trip during a congested period),
the testing examples were created based on the availability
of a current travel time estimate in at least one neighboring
link. This results in different examples than before. Relative
mean error results are shown in Table II.

Link Geospatial inference 1-input SVM Historical profile
2 15.89% 17.23% 15.43%
5 19.90% 20.77% 23.18%
8 19.79% 22.11% 27.59%
11 14.92% 15.03% 17.43%

TABLE II
COMPARISON OF TRAVEL TIME PREDICTION USING GEOSPATIAL

INFERENCE COMPARED AGAINST TWO OTHER METHODS. RELATIVE

MEAN ERRORS (RME) ARE GIVEN IN THE TABLE.

Geospatial inference achieves the lowest overall error for
Links 5, 8 and 11. The historical profile predictor is slightly
better on Link 2. If we look at the plot of RME versus travel
time shown in Figure 13, we see that the geospatial inference
predictor has lower error for larger travel times which are
times of greater congestion. These are arguably the most
important times to have more accurate predictions. It is also
interesting to note that the plot of RME versus travel time
in Figure 13 shows that the prediction error is lowest for all
methods near the mean travel time (which can be roughly
approximated from Figure 1). The prediction error goes up
for all methods as travel times differ from the mean.

Fig. 13. RME versus τ (travel time) for travel time prediction using
geospatial inference, 1-input SVM, and historical profile on Link 2. Pre-
diction using geospatial inference has the lowest error when congestion is
greatest (large travel times).

V. CONCLUSIONS

In our first set of experiments we demonstrated that
estimates of the current travel time are only helpful for pre-
dicting future travel times on a link when it has congestion.
For congested links, the 3-input SVM regression function
with Gaussian kernels is more accurate than a 1-input SVM
regression function, an historical profile predictor, or cur-
rent travel time predictor. We also showed that geospatial
inference can be used in the case where a recent travel time
estimate is not available on the desired link but is available
on at least one nearby link. Geospatial inference leads to
lower error rates compared to a 1-input SVM predictor or
an historical profile predictor.
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