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Abstract

We present an approach to designing capacityapproaching high-girth low-density parity-check
(LDPC) codes that are friendly to hardware implementation, and compatible with some desired
input code structure defined using a protograph. The approach is based on a mapping of any class
of codes defined using a protograph into a family of hierarchical quasicyclic (HQC) LDPC codes.
Whereas the parity check matrices of standard quasi-cyclic (QC) LDPC codes are composed of
circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant
sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some
number of levels. Next, we present a girth-maximizing algorithm that optimizes the degrees of
freedom within the family of codes to yield a high-girth HQC LDPC code, subject to bounds
imposed by the fact that that HQC codes are still quasi-cyclic. Finally, we discuss how certain
characteristics of a code protograph will lead to inevitable short cycles, and show that these short
cycles can be eliminated using a squashing procedure that results in a high-girth QC LDPC code,
although not a hierarchical one. We illustrate our approach with three design examples of QC
LDPC codes two girth-10 codes of rates 1/3 and 0.45 and one girth-8 code of rate 0.7 all of
which are obtained from protographs of one-sided spatially-coupled codes.
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Abstract— We present an approach to designing capacity-
approaching high-girth low-density parity-check (LDPC) codes
that are friendly to hardware implementation, and compatible
with some desired input code structure defined using a proto-
graph. The approach is based on a mapping of any class of codes
defined using a protograph into a family of hierarchical quasi-
cyclic (HQC) LDPC codes. Whereas the parity check matrices of
standard quasi-cyclic (QC) LDPC codes are composed of circu-
lant sub-matrices, those of HQC LDPC codes are composed of a
hierarchy of circulant sub-matrices that are in turn constructed
from circulant sub-matrices, and so on, through some number
of levels. Next, we present a girth-maximizing algorithm that
optimizes the degrees of freedom within the family of codes to
yield a high-girth HQC LDPC code, subject to bounds imposed
by the fact that that HQC codes are still quasi-cyclic. Finally,
we discuss how certain characteristics of a code protographwill
lead to inevitable short cycles, and show that these short cycles
can be eliminated using a “squashing” procedure that results in
a high-girth QC LDPC code, although not a hierarchical one.
We illustrate our approach with three design examples of QC
LDPC codes — two girth-10 codes of rates1/3 and 0.45 and
one girth-8 code of rate0.7 — all of which are obtained from
protographs of one-sided spatially-coupled codes.

I. I NTRODUCTION

Two broad classes of methods have emerged for the con-
struction of low-density parity-check (LDPC) codes [2], [3].
One set of methods is based on highly random graph con-
structions, while the other is based on structured algebraic
constructions. It is now well-known that random constructions
(see, e.g., [4]–[8]) can produce LDPC codes that closely
approach the Shannon capacity. However, highly random
constructions are not easy to implement in hardware as the
irregular connections between check and variable nodes in the
code graph imply high wiring complexity. In actual imple-
mentations, more structured constructions have been strongly
preferred because they result in much more practical wiring
and more straightforward parallelism in the decoders.

Quasi-cyclic LDPC (QC LDPC) codes are a particularly
practical and widely-used class of structured LDPC codes.
These codes have a parity check matrix which is broken into
sub-matrices that have a circulant structure. QC LDPC codes
are featured in a variety of communications system standards,
such as IEEE 802.16e [9], DVB-S2 [10] and 802.11 [11]. In
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view of their practicality, we focus in this paper on the design
of QC LDPC codes that have good decoding performance.

For nearly any application, it is important to optimize
decoding performance in the “water-fall” regime where the
signal-to-noise ratio (SNR) is relatively low. The standard way
to do that for irregular random constructions is to use “density-
evolution” or “EXIT chart” techniques to obtain the degree
distribution that optimizes the code threshold in the asymptotic
limit of long block lengths [8]. These techniques can also be
adapted to QC LDPC codes [12].

However, for some applications, optimizing water-fall per-
formance is not sufficient, and one must also avoid the “error
floors” that plague many LDPC codes in the higher SNR
regime. An “error floor” in the performance curve means that
the decoding failure rate does not continue to decrease rapidly
as the SNR increases. Eliminating or lowering error floors
is particularly important for applications that have extreme
reliability demands, including magnetic recording and fiber-
optic communication systems.

In the past, QC LDPC codes have been constructed based
on a wide variety of mathematical ideas, including finite
geometries, finite fields, and combinatorial designs [3], [13]–
[19]. Recently, there has also been great interest in the
class of “convolutional” [20], [21] or “spatially-coupled” [22]
LDPC codes. They have been shown, using density evolution
techniques, to approach Shannon capacity closely, or even
provably to achieve it on the binary erasure channel (BEC)
[22]. These codes are significant here, because they can be
implemented using quasi-cyclic constructions, and they should
thus be able to achieve very good performance while retaining
the practicality of other structured QC LDPC codes.

In this paper, we will focus on how to take a code structure,
such a particular spatial-coupling structure, that has been
designed to perform near the Shannon limit in the waterfall
regime, and constructing a QC LDPC code with that structure
that also empirically has excellent error floor performance.

Error floor issues for LDPC codes were investigated in [23],
[24], which showed that error floors in belief propagation (BP)
LDPC decoders are generally caused by “trapping sets.” A
trapping set is a set of a small number of bits that reinforce
each other in their incorrect beliefs. Trapping sets of bitsare
invariably arranged in clustered short cycles in a code’s Tanner
graph [25]. Therefore, one way to try to remove trapping sets
is to design the code’s Tanner graph carefully so that the
dangerous clusters of short cycles do not exist [26].

An alternative, and at least conceptually simpler approach,
is to design codes with larger girths—the “girth” of a code
is the length of the shortest cycle in the code graph. By
removing short cycles, we remove large swaths of potentially
dangerous configurations of cycles and, at one fell swoop,
hopefully lower the error floor. Motivated by this idea, in
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this paper, we focus on optimizing the girth of QC LDPC
codes that have already been given a structure optimized
for waterfall performance. In this way we hope to design a
practical code that simultaneously has good waterfall and error
floor performance.

There has been considerable work on optimizing girth in
LDPC codes. In some of this literature, the focus is specifically
on designing codes with very large girth. For example, in [27]
codes with girths up to 14 were obtained using parity check
matrices with sub-matrices that were sums of permutation
matrices, while [28] showed how to obtain QC LDPC codes
with girths of 18. More recently, [29] designed another class
of regular QC LDPC codes with girths as large as 24. While
these design techniques yield codes of very large girth, they
have the limitation that the structure of the code will be an
output of the design rather than an input so, for example, they
do not help in the design of a spatially-coupled code with large
girth.

The focus in this paper is somewhat different. We assume
that we are given a specific code structure that has already been
optimized for waterfall performance (e.g. a spatially-coupled
code with specific length, rate, and degree distributions),and
desire to create a QC LDPC code with that code structure
and optimized girth. Codes with good water-fall performance
inevitably have some irregularity in the degree-distribution of
the factor or variable nodes of the code graph. For the case
of QC LDPC codes, these irregular distributions are most
easily described in terms of “protographs” [30]. Protographs
are variants of Tanner graphs where bits and checks of the
same type are represented by a single “proto-bit” or “proto-
check.” In the case of QC LDPC codes, proto-bits can, for
example, represent sets of bits belonging to the same circulant
sub-matrices.

Previous approaches which optimize girth given a particular
code structure include the progressive edge growth (PEG)
algorithm [31], which was generalized to QC LDPC codes in
[32]. Another approach to optimizing the girth of QC LDPC
codes was studied in [33], where high-girth QC LDPC codes
were obtained using a random “guess-and-test” algorithm.

In this paper, we use a hill-climbing search algorithm for
optimizing girth, that we previously introduced in [1], that is
more efficient than the PEG and guess-and-test methods. The
hill-climbing algorithm greedily adjusts an initial QC LDPC
code to find a code of short length that meets the specified code
and girth parameters. Since the algorithm is greedy, it can get
stuck in local minima. However, given a set of parameters, the
algorithm finds QC LDPC codes of shorter length and in less
time than guess-and-test or PEG.

The protographs that arise in codes that have been optimized
for waterfall performance typically have some pairs of proto-
bits and proto-checks that are connected by multiple edges.A
straightforward way to handle this would be to use QC LDPC
codes where the circulant matrices had rows and columns of
weight greater than one. However, as we shall see, this direct
approach inevitably introduces short cycles into the graph.

The tricky problem of creating QC LDPC codes with
good girth and that correspond to protographs optimized for
waterfall performance is solved in this paper by a somewhat

complicated procedure. First, we need to introduce a new
family of generalized QC LDPC codes, which we call “hi-
erarchical” QC LDPC (HQC LDPC) codes. The parity check
matrices of these hierarchical codes consist of circulant sub-
matrices, which in turn consist of circulant sub-sub-matrices,
and so on for multiple “levels.” We show that, via a graph
“lifting” procedure [26], [34], [35], we can transform any
protograph with multiple edges between proto-checks and
proto-bits into atwo-level HQC LDPC code with circulant
matrices with higher weight at second level.

It turns out that many different hierarchical QC LDPC
codes correspond to a particular protograph, and thus many
degrees of freedom exist following the lifting. We use our
hill-climbing algorithm to choose from this family to get rid
of as many short cycles as possible. However, HQC LDPC
codes with weights greater than one at higher levels will also
automatically have some short cycles, just as non-hierarchical
QC LDPC codes do. Our hill-climbing algorithm can do
nothing about these “inevitable” cycles but it can, hopefully,
eliminate all short non-inevitable cycles. To get rid of the
inevitable cycles we introduce a “squashing” procedure. The
squashing step destroys the hierarchical structure of the code,
but the squashed code nevertheless remains a QC LDPC code
that corresponds to the desired protograph. The squashing
procedure is computationally trivial. This makes the two-step
procedure – first HQC LDPC then squash into a QC LDPC
code – much more computationally efficient than directly
applying our hill-climbing procedure to maximize the girthof
higher-weight QC LDPC codes with the desired protograph
structure. Thus hierarchical QC LDPC codes are a necessary
intermediate stage in the design of practical QC LDPC codes
that will simultaneously have good waterfall and error floor
performance.

The rest of the paper will explain in much more detail the
ideas outlined above. We begin in Section II by reviewing the
standard construction of QC LDPC codes in terms of their
parity check matrices. Then in Section III, we review the
standard Tanner graph representation of LDPC codes and the
“protograph” representation of structured codes. In Section IV
we review how short cycles can be identified from the parity
check matrix of a QC LDPC code. We also discuss why
the most straightforward transformation of the protographs of
interesting LDPC codes, such as spatially coupled codes, into
QC LDPC codes will lead to inevitable short cycles in the
Tanner graph of the resulting codes.

This leads us to the heart of our paper, where we in-
troduce hierarchical QC LDPC codes that can be used to
solve the problem of inevitable short cycles. In Section V we
introduce the most general form of HQC LDPC codes and
show that they can be described both in terms of a multi-
variate polynomial parity check matrix in multiple variables
and in terms of a tree structure. In Section VI, we explain
how to find cycles in the Tanner graphs of HQC LDPC
codes. In Section VII we describe our hill-climbing algorithm
for finding high girth QC LDPC codes and HQC LDPC
codes. In Section VIII, we discuss restricted two-level HQC
LDPC codes, the lifting transformation of protographs into
such codes, and the “squashing” procedure that efficiently
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eliminates inevitable cycles. Finally, in Section IX, we exhibit
high-girth QC LDPC codes that simultaneously have good
theoretical waterfall thresholds (because they are spatially-
coupled codes) and have good error-floor behavior resulting
from their high girth (which in turn is a result of the fact
that they are squashed versions of HQC LDPC codes). Many
details are deferred to the appendices.

II. QUASI-CYCLIC LDPC CODES

We begin by reviewing the well-known construction of
standard quasi-cyclic (QC) low-density parity-check (LDPC)
codes as previously described in the literature, e.g., in [3],
[20], [33]. In Section V we will generalize these codes and
introduce a novelhierarchical family of QC LDPC codes.

Quasi-cyclic LDPC codes are defined in terms of circulant
permutation matrices. LetI i,p denote the circulant permutation
matrix, or “cyclic shift matrix,” obtained by cyclically left-
shifting ap× p identity matrix byi positions, where0 ≤ i ≤
p−1; I0,p is thus thep×p identity matrix. We often suppress
the dependence onp, writing I i instead ofI i,p. As an example,
if p = 4, then

I1 =









0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0









.

An important special case of QC LDPC codes are “weight-I
(J, L) regular” QC LDPC code. The parity check matrix of
such a code consisting ofJ rows andL columns ofp × p
cyclic shift sub-matrices. The sub-matrix in thejth row and
lth column is I ij,l

= (I 1)ij,l and the code has blocklength
N = pL. We abstractly represent the(j, l)th submatrix as a
power of dummy variablex asxij,l .

More generally, a QC LDPC codes is represented by a
polynomialparity check matrixH(x) whose entries arepoly-
nomialsin x:

H(x) =











h1,1(x) h1,2(x) · · · h1,L(x)
h2,1(x) h2,2(x) · · · h2,L(x)

...
. . .

...
hJ,1(x) hJ,2(x) · · · hJ,L(x)











, (1)

where

hj,l(x) =

p−1
∑

s=0

cs[j, l]x
s (2)

for 1 ≤ j ≤ J , 1 ≤ l ≤ L.
For binary QC LDPC codes, which will be our focus for

the rest of this paper, the polynomial coefficientscs[j, l] must
all be 0 or 1. For aweight-IQC LDPC code for each(j, l) at
most one coefficientcs[j, l] is non-zero.

Example 1:Let C be a length-9 QC LDPC code described
by

H =

















1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 1 1 0

















. (3)

For this codeJ = 2, L = 3, andp = 3, andH can equivalently
be written as

H =

[

I 0 I0 I0
0 I0 I 1 + I 2

]

. (4)

The polynomial version of the parity check matrix is

H(x) =

[

x0 x0 x0

0 x0 x1 + x2

]

=

[

1 1 1
0 1 x1 + x2

]

. (5)

In [35], Smarandache and Vontobel classified QC LDPC
codes according to the maximum weight among the circulant
sub-matrices in their parity check matrix, or equivalently,
according to the maximum weight of the polynomials in their
polynomial parity check matrix. (The weight of a polynomial
is simply the number of non-zero terms in that polynomial.)
They defined a “type-M ” QC LDPC code as one for which
the maximum weight among all polynomial entrieshj,l(x) in
H(x) is M . We will change their terminology slightly and call
such a code aweight-M QC-LDPC code

Sincewt(h2,3(x)) = 2 in the code of Example 1—that is,
h2,3(x) = x1 +x2 is a binomial—and becausewt(h2,3(x)) ≥
wt(hj,l(x)) for all 1 ≤ j ≤ J , 1 ≤ l ≤ L, the code in
Example 1 is a weight-II QC LDPC code.

For any QC LDPC code, we define the vector of weight
sums

∑J
j=1 wt(hj,l(x)) for 1 ≤ l ≤ L, to be the “column

weight sum,”wtcol(H(x)), of H(x). We define the row weight
sum wtrow of H(x) similarly. Thus, the code of Example 1
has column and row weight sums

wtcol(H(x)) = [1 2 3]; wtrow(H(x)) = [3 3].

As we often work with weight-I QC LDPC codes, and
these codes are particularly important in practice, we introduce
some additional useful notation for them. We use the standard
definition [3] of thebase matrixof a weight-I QC LDPC code
to be theJ ×L matrix of powers (circulant shifts) that defines
the code, i.e.,logx(H(x)) where logarithms are taken entry-
by-entry, and wherelogx(0) is defined be−1, used to indicate
an all-zero sub-matrix.

III. G RAPHICAL REPRESENTATIONS OFQC LDPC CODES

As is very well known, an LDPC code can either be
represented by its parity check matrixH, or equivalently by
its Tanner graph [25]. A Tanner graph for an LDPC code is
a bi-partite graph consisting of “variable” nodes representing
the codeword bits, and “check” nodes representing the parity
checks. A variable node is connected to a check node by an
edge if and only if the corresponding entry inH is nonzero.
The degree of a node is defined as the number of edges
incident to that node.

A “protograph,” as introduced by Thorpe in [30], is a
template that can be used to derive a class of Tanner graphs.
Each node in a protograph represents a “type” of node in a
Tanner graph. The nodes will all be duplicatedp times in the
Tanner graph derived from the protograph.

As an example, consider Fig. 1, which shows a simple
example of a protograph that has three types of variable nodes
and two types of check nodes. This protograph tells us that
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A B

1 2 3

Fig. 1. A simple protograph with three types of variables andtwo types of
checks.

A B

1 2 3

A B

1 2 3

(a)

(b)

Fig. 2. Two Tanner graphs corresponding to the protograph shown in Fig. 1.
The Tanner graph in (a) does not have a quasi-cyclic structure; the one in (b)
does, and in fact has the parity check matrix of the QC LDPC code given in
Example 1.

each check of type A should be connected to one variable of
each of the three types, and each check of type B should be
connected to one variable of type 2 and two variables of type
3. Similarly, each variable of type 1 should be connected to
one check of type A, and so on.

Fig. 2 shows two Tanner graphs derived from the protograph
of Fig. 1, withp = 3. Note that there are many possible Tanner
graphs that one can construct that correspond to a particular
protograph, and they need not necessarily have a quasi-cyclic
structure. The Tanner graph shown in Fig. 2 (a) is not quasi-
cyclic. But it is always easy to construct a quasi-cyclic version
of any protograph.

Protographs can equivalently be described by an “incidence”
matrix. An incidence matrix has a number of rows equal to the
number of types of checks in the protograph and a number of
columns equal to the number of types of variables. Each entry
in the incidence matrix tells you how many edges there are
connecting a type of check node to a type of variable node in
the protograph. For example, the incidence matrix (alternately
termed a “protomatrix”)P for the protograph in Fig. 1 would

be

P =

[

1 1 1
0 1 2

]

. (6)

To derive a quasi-cyclic parity-check matrixH(x) from the
template specified by a particular protograph, one “lifts” (cf.,
e.g., [3], [26]) the protograph into aH(x) that specifies a
Tanner graph. The Tanner graph so produced is termed a
“cover” [34] (see [35] and references therein for a more
formal definition) of the original protograph. The lifting pro-
cedure is simply to replace each entry in the incidence matrix
with a polynomial of weight equal to the entry.

For example, the protograph in Fig. 1 which has the
incidence matrixP given in (6), can be lifted into a QC LDPC
code with parity check matrix

H(x) =

[

xa xb xc

0 xd xe + xf

]

, (7)

where a, b, c, d, e and f are integer exponents between
0 and p − 1, with e 6= f . These integer exponents (with
some additional constraints such ase 6= f ) parameterize an
ensemble of QC LDPC codes all of which are liftings of (and
which cover) the original protograph. In our algorithms we
will optimize over the choice of these explonents to find a
lifting that maximizes the girth of the resulting code.

As an example, the particular lifting that would convert this
protograph into the Tanner graph shown in Fig. 2 (b), i.e., the
QC LDPC code with parity check matrix given in Example 1,
is when the exponents are chosen to give:

H(x) =

[

x0 x0 x0

0 x0 x1 + x2

]

. (8)

IV. CYCLES IN QC LDPCCODES

In this section we review how to identify cycles in QC
LDPC codes from their parity check matrices. As was shown
in [33], there are efficient ways to describe sets of cycles
of a QC LDPC code in terms of the code’s polynomial
parity check matrix. In Section IV-A we introduce the basic
ideas from [33] behind identifying cycles in weight-I QC
LDPC codes. These results have been extended to higher-
weight QC LDPC codes [27], [35], [36]. In Section IV-B, we
review how to identify cycles in QC LDPC codes of arbitrary
weight, and introduce the notation we will subsequently need
to discuss cycles in hierarchical QC LDPC codes. Finally, in
Section IV-C we review why higher-weight QC LDPC codes
with certain characteristics inevitably have short cycles. We
point out that this poses an obstacle to constructing QC LDPC
codes with good girth—an obstacle that we will overcome by
introducing hierarchical QC (HQC) LDPC codes in Section V.
As described in Section VIII, we will ultimately apply a lifting
transformation into HQC codes combined with a “squashing”
procedure to obtain high-girth QC codes.

A. Finding cycles in weight-I QC LDPC codes

A cycle is a path through nodes in the Tanner graph of a
code. It alternates between check and variable nodes, and starts
and ends at the same node. In terms of the code’s parity check



5

matrix, each check node in the Tanner graph corresponds
to a row in its parity check matrix, and each variable node
corresponds to a column. A cycle can thus be visualized as a
sequence of alternating vertical and horizontal moves through
the parity check matrix starting and ending on the same row.
A vertical move (along a column) corresponds to choosing
a second edge connected to the same variable node that will
form the next step in the cycle. A horizontal move (along a
row) corresponds to choosing two edges connected to the same
check node that form part of the path.

To make the connection between this logic and the special
structure of QC LDPC codes more concrete, consider Fig. 3.
This figure depicts the parity check matrix of a weight-I QC
LDPC code with parametersJ = 4, L = 9, and p = 3.
We focus on the four3 × 3 cyclic shift matrices (represented
by the black squares)Ia, I b, I c, and Id. Two choices for the
parameters of these four matrices are shown in the sub-figures:
a = 0, b = 2, c = 1, and d = 2 on the left, anda = 0,
b = c = d = 2 on the right.

H  =

0   1   0
0   0   1

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

0   0   1
1   0   0
0   1   0

1   0   0 1   0   0
0   1   0
0   0   1

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

0   1   0
0   0   1
1   0   0

da

Ib Ic

II

Fig. 3. A parity-check matrix and four3× 3 circulant permutation matrices
(Ia, Ib, Ic and Id) selected from it. One set of parameters (lower left,a = 0,
b = 2, c = 1, d = 2 ) results in a cycle of length four. An alternate set
(lower right, a = 0, b = c = d = 2) results in a cycle of length twelve.

Consider any path through the base matrix of this code.
Because of the replacement of each base matrix entry by ap×p
circulant matrix, a path through the base matrix corresponds
to p paths through the Tanner graph. For any of these paths
to be a cycle it is necessary for the path through the base
matrix to form a cycle, without passing through any all-zeros
matrices. But, this is not sufficient since each cyclic shift
matrix corresponds top parity andp variable nodes. The path
could end up at a different variable node in the same cyclic
shift matrix and thus not complete a cycle.

The necessary and sufficient condition for cycles to exist
is that when the path through the base matrix returns to the
starting entry, it returns to the same column of the cyclic shift
matrix from which it started. In the example of Fig. 3, consider
the path through the base matrix starting at the entry labeled a,
then progressing through the entries labeledb, c, andd in turn,
and terminating at the entry labeleda. The corresponding path
through the parity check matrix, with parameter settingsa = 0,
b = 2, c = 1, d = 2, is depicted in the left-hand example of

Fig. 3 and results in a cycle of length four. However, with the
slightly different choice of circulant shifts of the right-hand
example, a return to the same column of the cyclic shift matrix
occurs only after two more passes around the base matrix and
an overall cycle of length12.

We now specify the conditions on the{a, b, c, d} developed
in [33] that result in a cycle (in fact in a set ofp cycles).
Calculate an alternating sum of the shift indices associated
with neighboring permutation matrices along a given path
(every odd shift index is subtracted rather than added). For
example, consider the left-hand path of Fig. 3. The sum is
−a + b − c + d. Each difference between neighboring shift
indices in the sum corresponds to the shift in what column
(i.e., what variable node) of the cyclic permutation matrices
the path passes through. Only if the differences sum to zero
(mod-p) at the end of the path will the path return to the
same variable node in the starting permutation matrix, thereby
forming a cycle. For the example of Fig. 3, the condition for
a length-four cycle to exist is:

(−a + b − c + d) mod p = 0, (9)

which is satisfied fora = 0, b = 2, c = 1, d = 2, but is not
satisfied bya = 0, b = c = d = 2.

B. Finding cycles in higher-weight QC LDPC codes

We now consider the more involved example of the weight-
II code of Example 1 from Section II. Recall that this code is
defined by the2 × 3 polynomial parity-check matrix

H(x) =

[

x0 x0 x0

0 x0 x1 + x2

]

.

In terms of the coefficientscs[j, l] defined by hj,l(x) =
∑p−1

s=0 cs[j, l]x
s, cf. (2), c0[j, l] = 1 if (j, l) equals(1, 1),

(1, 2), (1, 3) or (2, 2); and cs[2, 3] = 1 if s = 1 or s = 2;
all othercs[j, l] = 0.

Now, consider the following ordered series:

O = {(1, 2), (2, 2), (2, 3), (2, 3), (2, 3), (1, 3)} (10)

where each pair(j, l) in O satisfies1 ≤ j ≤ J = 2 and
1 ≤ l ≤ L = 3. This ordered series specifies a sequence of
rectilinear moves throughH(x). These moves are analogous
to those in Fig. 3 with the important distinction that if the
polynomial in position(j, l) has more than one term (that is,
cs[j, l] is non-zero for more than one value ofs), then the next
pair in the sequencecan be the same. For example, in (10)
the third, fourth, and fifth pairs are identical.

To specify a candidate cycle through the Tanner graph, we
associate a coefficient indexs with each pair(j, l) in O, such
that cs[j, l] 6= 0. We denote this series of coefficient indices
by S. To ensure that each step in the series corresponds to
traversing a distinct edge in the Tanner graph we require the
following of neighboring pairs(j−, l−) and(j+, l+) in O and
the corresponding neighboring coefficient indicess− and s+

in S: if (j−, l−) = (j+, l+), then the corresponding indices
s− 6= s+.

The candidate cycle will be a cycle if the alternating sum
of coefficient indices inS modulop equals zero.
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In our example, consider the two following choices for the
respective (ordered) sets of coefficient indices:

Sa = {0, 0, 1, 2, 1, 0} (11)

Sb = {0, 0, 2, 1, 2, 0}. (12)

Each of these choices corresponds to a cycle of length-6
through the Tanner graph of the code. The alternating sums
modulo-3 can be verified to be equal to zero. Respectively
these sums are:

(−0 + 0 − 1 + 2 − 1 + 0) mod3 = (0) mod3 = 0

(−0 + 0 − 2 + 1 − 2 + 0) mod3 = (−3) mod3 = 0.

C. Inevitable cycles in higher-weight QC LDPC codes

Unfortunately, the logic described in the previous section
implies that higher-weight QC LDPC codes will inevitably
contain short cycles. An important theorem proven by Smaran-
dache and Vontobel [35], (see also O’Sullivan [27], Example
3.2, where inevitable cycles are called “balanced cycles”)
states that any weight-III QC LDPC code will inevitably
contain cycles of length six. Suppose that, without loss of
generality, that the polynomialhj,l(x) is weight-III and has
the formxa + xb + xc. To see that a cycle must exist using
our notation, choose the length-six ordered series

O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)}, (13)

and chooseS = {a, b, c, a, b, c}. We find that

(−a + b − c + a − b + c) mod p = 0, (14)

for any value ofp. Therefore an “inevitable” cycle exists.
One can also prove (see [35], Theorem 17 or [27], Example

3.3) that a parity check matrixH(x) of a weight-II QC LDPC
code that contains two weight-two polynomials in the same
row or the same column will inevitably have eight-cycles. To
see this, suppose the two weight-2 polynomials are in the same
row j, but in two different columnsl1 6= l2. Let hj,l1 = xa+xb

andhj,l2 = xc + xd. Consider the length-eight ordered series

O = {(j, l1), (j, l1), (j, l2), (j, l2), (j, l1), (j, l1), (j, l2), (j, l2)}
(15)

and choose
S = {a, b, c, d, b, a, d, c}. (16)

We again find that

(−a + b − c + d − b + a − d + c) mod p = 0, (17)

regardless of the value ofp.
These inevitable six-cycles and eight-cycles appear to put

serious limitations on what protographs can be converted
into quasi-cyclic codes with high girth. For example, if the
protograph has a type of variable that is connected to a type of
check by three edges, the simple lifting of the incidence matrix
of the protograph described in Section III will inevitably lead
to six-cycles in the QC LDPC code obtained.

Furthermore, protographs with higher edge weights are
not particularly exotic. Consider for example the protographs
shown in Section IX-A, Fig. 8, which are the protographs for
“one-sided” spatially coupled codes as described by Kudekar

et al. [22]. Notice that if we convert these protographs into
QC LDPC codes by a simple lifting, the QC LDPC codes
corresponding to the protographs in Fig. 8 (a) would inevitably
have eight-cycles, while those in Fig. 8 (b) would inevitably
have six-cycles.

It should be noted that even for weight-I QC LDPC codes,
there are limits to the girth. In particular, Fossorier [33]has
proven (see his Theorem 2.5) that any(J, L) regular QC LDPC
code must have girth of at most 12, and that theorem can easily
be extended to show that there are inevitably 12-cycles for
any weight-I QC LDPC code with a base matrix containing
a 2 × 3 or 3 × 2 non-zero sub-matrix. One can evade that
bound with constructions that place a large number of all-
zeroes sub-matrices into the parity check matrix [27], [28],
but the challenge we take up here is somewhat different. We
are interested in taking as an input a protograph for a spatially-
coupled code where it is not even obvious how to avoid cycles
of length 6 or 8, and obtaining a reasonably large-girth version
of such a code.

It turns out that there do exist techniques to construct QC
LDPC codes corresponding to these protographs that have
girth of 10 or greater. We present such codes in Section IX-
A. But, to understand these techniques, we need to make an
apparent detour and introducehierarchical QC LDPC codes.

V. H IERARCHICAL QC LDPCCODES

We now introducehierarchical QC LDPC codes (HQC
LDPC codes), motivated by the fact that these codes will
ultimately enable us to solve the problem of constructing QC
LDPC codes corresponding to protographs with multiple edges
between check and variable types, without creating inevitable
short cycles in the Tanner graph of the code. However, because
these codes may eventually have other applications, we present
their construction in a form that is actually more general than
we will need for the purpose of eliminating inevitable short
cycles.

A hierarchical QC LDPC code is formed from “levels”
that each have a quasi-cyclic structure. The structure can be
specified in two equivalent, complementary forms. The first,in
terms of the polynomial parity check matrices of these codes,
is presented in Sec. V-A. The second, in terms of the “tree
structure” of these codes is presented in Sec. V-B. This second
form finds use in our girth maximizing algorithms. Finally, in
Sec. V-C we connect the hierarchical structure to a particular
sequence of liftings of a base graph, per the discussion of
Sec. III. The number of liftings equals the number of levels
in the resulting HQC LDPC code.

Although our definitions of general hierarchical QC LDPC
codes are novel so far as we know, we have identified one prior
example of a discussion of hierarchical codes the literature.
This is the short discussion in [35, Sec. VII] of the possiblity
of using a sequence of graph covers to increase the minimum
distance of the base code. The special case described there is
a two-layer code, discussed in more depth in our examples in
Sec. VIII.
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H(x) =

















x6 0 x1 + x7

x1 + x7 x6 0
0 x1 + x7 x6

0 x 1 + x2

1 + x2 0 x
x 1 + x2 0

0 0 0
0 0 0
0 0 0

x6 x3 1
1 x6 x3

x3 1 x6

0 x 1 + x2

1 + x2 0 x
x 1 + x2 0

x6 0 x1 + x7

x1 + x7 x6 0
0 x1 + x7 x6

x6 x3 1
1 x6 x3

x3 1 x6

0 0 0
0 0 0
0 0 0

















(18)

H(x, y) =

[

x6 + (x + x7)y (1 + x2)y + xy2 0 x6 + y + x3y2

(1 + x2)y + xy2 x6 + (x + x7)y x6 + y + x3y2 0

]

(19)

H(x, y, z) =
[

x6 + (x + x7)y + ((1 + x2)y + xy2)z
∣

∣

∣
(x6 + y + x3y2)z

]

(20)

A. Parity check matrices of hierarchical QC LDPC codes

Before fully defining HQC LDPC codes formally, it is easier
to have a concrete example in mind.

Example 2:Consider the polynomial parity check matrix
specified in equation (18) withp = 8. Because the highest
weight of any of the polynomial entries is2, (e.g.,h1,3(x) =
x1 +x7), and because there are12 columns in the matrix, this
is a length-96 weight-II QC LDPC code.

But note that this parity check matrix has additional struc-
ture which makes it ahierarchicalQC LDPC code. In partic-
ular, in this example, each3 × 3 sub-matrix of polynomials
in (18) has a circulant structure, as do both the left-hand and
right-hand sets of2 × 2 sub-matrices of3 × 3 sub-matrices.

Just as we use polynomials in the dummy variablex to
represent the underlying circulant sub-matrices in a standard
QC LDPC code, we can use a bi-variate polynomial in the
two dummy variablesx andy to represent both the circulant
matrices represented by the variablex in (18) as well as
the circulant arrangements within each3 × 3 sub-matrix of
polynomials inx. The latter circulant structure we represent
using the dummy variabley. We can further represent the
2× 2 circulant structure of3× 3 circulant sub-matrices using
the additional dummy variablez.

Thus, in equation (19) we contract the6 × 12 polynomial
parity check matrixH(x) of equation (18) into the2 × 4 bi-
variate polynomial parity check matrixH(x, y). As we use this
example to illustrate many aspects of the ensuing discussion,
please make sure you think about and understand why, e.g.,
the upper right3×3 sub-matrix inH(x) is represented by the
bi-variate polynomialx6 + y + x3y2 in H(x, y).

We can repeat the process to contractH(x, y) into the1×2
tri-variate polynomial parity check matrixH(x, y, z) given in
equation (20).

Each of the three contractions of the parity check matrix of
this code into the polynomial parity check matrices represented
by (18), (19), and (20), corresponds to a “level” in the
hierarchy of this 3-level HQC LDPC code.

In this example, we started with a polynomial parity check
matrix H(x), and contracted it first toH(x, y) and then to
H(x, y, z). When constructing an HQC LDPC code, it is often
more natural to go in the other direction—expanding a matrix
like H(x, y, z) into H(x) and then ultimately into the full

parity check matrix whose entries are ones and zeroes. To
expand a polynomial matrix, we obviously need to know the
size of the circulant matrices at every level.

We now present a formal definition of the family ofK-level
hierarchical QC LDPC codes which generalizes our example.

Definition 1: A hierarchical QC LDPC code withK levels
is defined by aJ[K] × L[K] multi-variate polynomial parity
check matrixH(·) in K variables. The entry in thejth row and
lth column ofH(·), 1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K] is aK-variate
polynomialhj,l(·, . . . , ·) over theK variables,x[1], . . . , x[K].
The maximum exponent of any of these polynomials inx[k],
1 ≤ k ≤ K, is p[k] − 1. The coefficient associated with the
term xs1

[1] · x
s2

[2] · · ·x
sK

[K] where0 ≤ sk ≤ p[k] − 1 for all k is
cs1,...,sK

[j, l]. With these definitions we defined the code by
the J[K] · L[K] polynomials

hj,l(x[1], . . . ,x[K]) =
p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...,sK
[j, l]

(

K
∏

k=1

xsk

[k]

)

. (21)

The parity check matrix of such a code is obtained by replacing
each of theJ[K] · L[K] entries ofH(x[1], . . . , x[K]) with the
sub-matrix

p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...sK
[j, l]

(

IsK

1,p[K]
⊗ . . . ⊗ I s1

1,p[1]

)

, (22)

where ⊗ denotes a Kronecker product. Defining the recursive
relationsJ[k−1] = J[k] · p[k] and L[k−1] = L[k] · p[k], where
0 ≤ k ≤ K, the parity check matrix thus constructed has
J[0] = J[K] ·

∏K
k=1 p[k] rows andL[0] = L[K] ·

∏K
k=1 p[k]

columns.

While the definition of HQC LDPC codes holds more
generally for codes defined in fields other than GF(2), in this
paper we exclusively considerbinaryQC LDPC codes wherein
all cs1,...,sK

[j, l] are binary. We return to our previous example
to illustrate our definitions.

Example 2 (continued):The code of this example is a three-
level HQC LDPC code. To cast this example into the language
of Definition 1 we first identifyx with x[1], y with x[2], and
z with x[3].
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In this examplep[1] = 8, p[2] = 3, p[3] = 2. Therefore,
J[3] = 1, L[3] = 2; J[2] = 2, L[2] = 4; J[1] = 6, L[1] = 12;
andJ[0] = 48, L[0] = 96.

We can rewrite, e.g., the termh1,1(x, y, z) of (20) as

h1,1(x[1], x[2], x[3])

= x6
[1] +

(

x[1] + x7
[1]

)

x[2] +
((

1 + x2
[1]

)

x[2] + x[1]x
2
[2]

)

x[3]

=
1
∑

s3=0

2
∑

s2=0

7
∑

s1=0

cs1,s2,s3 [1, 1]xs1

[1]x
s2

[2]x
s3

[3],

where all coefficientscs1,s2,s3 [1, 1] are zero except for
c6,0,0[1, 1] = c1,1,0[1, 1] = c7,1,0[1, 1] = c0,1,1[1, 1] =
c2,1,1[1, 1] = c1,2,1[1, 1] = 1.

Rather than expandingH(x[1], . . . , x[K]) into a full parity
check matrix as in (22), one often wants to generate the form
given in equation (1) of the polynomial parity check matrix
H(x[1]) of a QC LDPC codein one variable. To do this we use
the construction of (22) for all but the first level. We replace
eachhj,l(x[1], . . . , x[K]) with the polynomial matrix inx[1]

p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...,sK
[j, l]
(

IsK

1,p[K]
⊗ · · · ⊗ Is2

1,p[2]

)

xs1

[1]. (23)

The matrixH(x[1]) is of sizeJ[1]×L[1]. We return once more
to our example to illustrate this idea.

Example 2 (continued): Consider the term of
h1,1(x[1], x[2], x[3]), namely(1 + x2

[1])x[2]x[3], corresponding
to the non-zero coefficientsc0,1,1[1, 1] and c2,1,1[1, 1].
According to equation (23), The contribution of this term to
H(x[1]) is

c0,1,1[1, 1] (I 1,2 ⊗ I1,3) x0
[1] + c2,1,1[1, 1] (I 1,2 ⊗ I1,3) x2

[1],

wherex0
[1] = 1, c0,1,1[1, 1] = c2,1,1[1, 1] = 1 and

I 1,2 ⊗ I1,3 =

















0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

















. (24)

Referring back to the left-hand six-by-six sub-matrix of
H(x, y, z) in (18) we can confirm the correctness of this
pattern, as a1 + x2 term appears in each of the non-zero
entries in the matrix of equation (24).

Having worked this example, we can now see how the
form of equation (23) nicely reveals the structure of HQC
LDPC codes. Each row and each column of the matrix
IsK

1,p[K]
⊗ · · · ⊗ Is2

1,p[2]
has exactly one non-zero element. If the

coefficientcs1,s2,...,sK
[j, l] is non-zero, the permutation matrix

Is1
1,p[1]

(equivalent to the termxs1

[1]) is added at the location of
each of these non-zero elements.

Finally, we note that the polynomial parity check ma-
trix of a K-level HQC LDPC code can more generally be
expanded into a parity check polynomialH(x[1], . . . , x[K̃])

in K̃ variables whereK̃ < K. We call this the “level-
K̃” polynomial parity check matrix of the code. We derive

this matrix by expanding out all but the last̃K levels.
Replace eachhj,l(x[1], . . . , x[K]) with the polynomial matrix
in x[1], . . . , x[K̃]

p[K]−1
∑

sK=0

. . .

p[1]−1
∑

s1=0

cs1,...,sK
[j, l]
(

IsK

1,p[K]
⊗ · · · ⊗ I

sK̃+1

1,p[K̃+1]

)

K̃
∏

k=1

xsk

[k].

The matrixH(x[1], . . . , x[K̃]) has dimensionJ[K̃] × L[K̃].

B. Tree structure of HQC LDPC codes

We now show that we can alternatively describe an HQC
LDPC code by specifying the code’stree structure. The tree
structure of any HQC LDPC code is defined by a matrix of
labeled trees, defined in Definition 2. These labeled trees quite
naturally reveal the hierarchical structure of the code. Wewill
show that there is a complete equivalence between Definition1
of the last section and the definitions of this section. We can
start with Definition 1 and easily find the unique set of labeled
trees that specify the code or, starting from a tree structure,
find the unique HQC LDPC code that has that structure.

The reasons to consider this alternative description are two-
fold. First, the representations of this section help reveal
the hierarchical structure within the algebraic description of
Definition 1. Second, we will useunlabeledtrees to define a
family of HQC LDPC codes, and then will want to search for
a labeling within that family to optimize girth.

The basic observation that motivates the following defini-
tions is that the non-zero terms of the polynomials that define
any HQC LDPC code have ahierarchical clusteringthat can
be represented by a labeled tree. We formally define such a
labeled treeas follows.

Definition 2: A labeled treeT, corresponding to an entry in
the J[K] × L[K] multi-variate polynomial parity check matrix
H(·) in K variables defining aK-level HQC LDPC code, is
a depth-K tree. The root node of the tree is the single node
at the top (Kth) level. Each node at levelk, 1 ≤ k ≤ K, has
a number of edges connecting it to nodes in the next level
down. The number of edges must be an integer in the set
{1, . . . , p[k] − 1}.

Each edge below a node at levelk is labeled by an integer
in the set{0, 1, . . . , p[k] − 1}. Edges are termed “siblings” if
they share the same parent (i.e., are connected to the same
node at the higher level). The edge labels of sibling nodes
are constrained to be distinct. We refer to the edges below
the lowest nodes as “leaves.” We will have need to index the
edges at each level of the tree, so use|T[k]| to denote the
number of edges inT at level k, i.e., the set of edges that
have a parent node at levelk.

The code discussed in Example 2 is characterized by the
matrix of two labeled trees shown in Figure 4. The left-hand
tree characterizes the polynomialh1,1(x, y, z) and the right-
hand tree characterizesh1,2(x, y, z), both specified in (20).
Before understanding how these labeled trees relate to the
structure of the code we note that for this codep[1] = 8,
p[2] = 3 andp[3] = 2, and node and edge labels are within the
ranges specified by Definition 2.

The next definition relates these trees to the structure of the
code.
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Fig. 4. Example of the tree structure of a family of three-level hierarchical
QC LDPC codes. The left-hand tree isT1,1, the right-hand tree isT1,2.

Definition 3: The tree structureof a K-level HQC LDPC
code is specified by a matrix of labeled treesT = {Tj,l},
1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K]. To each leaf ofTj,l we
associate a single non-zero coefficientcs1,...,sK

[j, l] in a one-
to-one manner. If the edge labels on the unique path from
the leaf to the root node aree1, . . . , eK then the non-zero
coefficient associated with the leaf isce1,...,eK

[j, l] = 1.
In certain cases (corresponding to all-zero polynomials) we

want to define a “null” tree. This is a non-existent tree (and
therefore no edges exist so all coefficients are zero). We use
the special symbol∗ to denote the null tree. E.g.,T2,1 = ∗
for the code specified in (5).

The number of edges below levelK of tree Tj,l indi-
cates the number ofdistinct powers ofx[K] that appear in
hj,l(x[1], . . . , x[K]). Each node at levelK − 1 corresponds to
one of these terms. The number of edges below each of the
nodes at levelK − 1 indicates the number of distinct powers
of x[K−1] associated with that term, and so on down the tree.
The number of leaves in the tree equals the number of terms
in the polynomialhj,l(x[1], . . . , x[K]). The maximum number
of leaves below any of the lowest level nodes (across all(j, l)
pairs) tells us the weight of the code (weight-I, weight-II,etc.).
The edge labels indicate the exponents that define the non-zero
polynomials.

We can also define a more fine-grained “weight at level
k” of a hierarchical code by the maximum number of edges
below any of the nodes at levelk. A hierarchical code can have
different weights at different levels; for example, the code from
Example 2 with tree structure shown in Figure 4 is weight-II
at level 1 (the lowest level), weight-III at level 2, and weight-II
at level 3.

The following lemma shows that the two ways of concep-
tualizing HQC LDPC codes (Definition 1 or Definition 3) are
equivalent.

Lemma 1:There is a one-to-one mapping between any
HQC LDPC codes as defined in Definition 1 and a tree
structure, as defined in Definition 3.

Proof: We first show that any HQC LDPC code has
a tree structure that can be read off from the form of the
polynomials that make up its polynomial parity-check matrix.
To see this, start with Definition 1. TheJ[K]L[K] polynomials
each define one labeled tree. Using the distributive law, we
cluster the terms of each polynomial as much as possible (i.e.,

into the least-factored form of the polynomial). The resulting
(hierarchical) clustering of terms specifies a labeled tree.

Conversely, we now show that any set of labeled trees can
be uniquely mapped to an HQC LDPC code. Starting with the
set of labeled trees, we first solve for the non-zero coefficients
by concatenating edge labels on all paths from distinct leaves
to the root. Using the resulting set of non-zero coefficientsin
Definition 1 specifies the code.

Example 3:To understand the structure on the code im-
posed by the tree topology, consider again the two trees shown
in Fig. 4. By “tree topology,” we simply mean the unlabeled
versions of these trees. Each unlabeled tree has three levels and
there are two of them. From this we infer that these unlabeled
trees specify a family of three-level HQC LDPC codes where
J[3] = 1 andL[3] = 2. Since the maximum number of leaves
below a node at the first level is two, these trees specifies a
family of weight-II QC LDPC codes.

Now focus on the left-hand tree. To simplify notation, let
us again usex for x[1], y for x[2], and z for x[3]. Since the
number of leaves is six, we deduce thath1,1(x, y, z) has six
terms, i.e.,

h1,1(x, y, z) =

6
∑

i=1

xaiybizci,

wherep[1] = 8, p[2] = 3 andp[3] = 2, 0 ≤ ai ≤ 7, 0 ≤ bi ≤ 2,
and0 ≤ ci ≤ 1. Since the root node has two edges, we deduce
that these six terms are clustered into two sets of polynomials
defined byc1 = c2 = c3 andc4 = c5 = c6, thus

(xa1yb1+xa2yb2+xa3yb3)zc1+(xa4yb4+xa5yb5+xa6yb6)zc4 .

wherec1 6= c4. (Sincec1 andc4 are both binary, without loss
of generality we could setc1 = 0 and c4 = 1 at this point.)
Now from the second level in the tree we deduce that the terms
in zc1 group into two sets, one with two terms sob2 = b3.
The same happens with the terms inzc4 whereb4 = b5. This
tells us that the polynomials compatible with this tree have
the form

(xa1yb1 +(xa2 +xa3)yb2)zc1 +((xa4 +xa5)yb4 +xa6yb6)zc4 ,
(25)

wherec1 6= c4, b1 6= b2, b4 6= b6, a2 6= a3 anda4 6= a5 (but,
e.g.,b1 = b4 is allowed).

One can now see that the topology of the unlabeled version
of the trees of Fig. 4 specifies a family of HQC LDPC codes, of
which the code considered in Example 2, and specified in (20),
is one member. As the last example illustrates, many degrees
of freedom remain within the specified family. In particular
these are the choice of theai, bi andci in (25), subject to the
constraintsc1 6= c4, b1 6= b2, . . . , a4 6= a5. In the algorithms
of Section VII, were we maximize the girth of our codes, we
search among these degrees of freedom, keeping the code’s
unlabeled tree structure fixed.

Finally, we note that in a non-hierarchical weight-I QC
LDPC code, the trees inT are quite simple. Each is either
the null tree or a tree that consists of a single root node with
a single leaf below it. No leaf has a sibling so no constraints
are placed on the choice of edge labels.
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C. Hierarchical structure as a particular choice of graph
coverings

We now connect the hierarchical structure of HQC LDPC
codes to a particular sequence of graph “covers” [34], [35].We
illustrate this connection by showing how the code discussed
in Example 2 is a three-layer cover of the code’s protograph.
This is the persective taken in [35]. The sequence of covers is
depicted in Fig. 5.

Example 2 (continued):Fig. 5(a) depicts the Tanner graph
of the QC LDPC code, whose parity check matrix is obtained
by substitutingI i for eachxi in (18). In Fig. 5(a), the dots
in each circle depict the variable nodes that correspond to
one circulant matrix. The squares in each rectangle depict the
check nodes that correspond to one circulant matrix. Fig. 5(b)
can be regarded as ap[1]-cover (wherep[1] = 8) of the
protograph of Fig. 5(a) and represents (18). Each column and
each row inH(x) of (18) respectively correspond to a dot
and a square in Fig. 5(b). If any non-zero element inH(x)
is the summation of more than onexi term, the number of
edges connecting the corresponding dot and square in Fig. 5(b)
equals the number of terms.

To get to Fig. 5(c) and (d) we recursively apply the same
logic. Fig. 5(b) is a p[2]-cover (wherep[2] = 3) of the
protograph of Fig. 5(c). Each column and each row inH(x, y)
of (19) respectively correspond to a dot and a square in
Fig. 5(c). Finally, Fig. 5(c) is ap[3]-cover (wherep[3] = 2)
of the protograph shown in Fig. 5(d). Each column and each
row in H(x, y, z) of (20) respectively correspond to a dot and a
square in Fig. 5(d). Reversing the above steps, the protograph
in Fig. 5(d) can thus be “lifted” into the Tanner graph of
Fig. 5(a) through a sequence of three covering steps.

VI. CYCLES IN HIERARCHICAL QC LDPCCODES

We now state the necessary and sufficient conditions on the
polynomial parity check matrix of an HQC LDPC code for that
code to have a cycle of a particular length. These conditions
generalize those specified by Fossorier in [33] for weight-IQC
LDPC codes. They are also formalizations and generalizations
of the examples we gave for higher-weight QC LDPC codes in
Section IV-B; the main important new requirement compared
to those examples is that our cycles now need to be cycles at
all levels of the hierarchy simultaneously.

A. Finding cycles in HQC LDPC codes

We start by defining a path (or “candidate cycle”) through
a K-variate polynomial parity check matrix.

Definition 4: A length-2Λ path P through a K-variate
J[K] × L[K] polynomial parity check matrix matrixH(·) of
an HQC LDPC code is specified by two sets,O andS, i.e.,
P = {O,S}.

The first setO is an ordered series

O = {(j1, l1),(j2, l2),(j3, l3), · · · ,(j2Λ, l2Λ)} (26)

such that

(i) 1 ≤ jt ≤ J[K] and1 ≤ lt ≤ L[K] for all t, 1 ≤ t ≤ 2Λ,
(ii) j2Λ = j1 ,

(a) (b)

(c) (d)

…
…

…
…

Fig. 5. Visualizing the HQC LDPC code of Example 2 as a three-layer graph
cover of the code’s protograph.

(iii) jt = jt+1 for t ∈ Zeven (even integers),
(iv) lt = lt+1 for t ∈ Zodd (odd integers),
(v) |C[j, l]| > 0 for all (j, l) ∈ O, where the setC[j, l] is

defined to be the set of coefficients in the polynomial in
the jth row andlth column ofH(·) that are non-zero:

C[j, l] = {cs1,...,sK
[j, l] : cs1,...,sK

[j, l] 6= 0}. (27)

The second setS is a set of length-K vectors of coefficient
indices

S = {s[j1, l1], s[j2, l2], . . . , s[j2Λ, l2Λ]} (28)

where, as implied by the notation,(jt, lt) ∈ O for all t, 1 ≤
t ≤ 2Λ, and |S| = |O|. Furthermore,

(vi) the kth coordinate sk[j, l] of s[j, l] satisfies 0 ≤
sk[j, l] ≤ p[k] − 1 for all (j, l) ∈ O,

(vii) cs[j,l][j, l] ∈ C[j, l] for all (j, l) ∈ O, wherecs[j,l][j, l] is
a compact notation forcs1,...,sK

[j, l].
(viii) if consecutive elements ofO are identical, i.e.,(jt, lt) =

(jt+1, lt+1) for somet, 1 ≤ t ≤ 2Λ, then s[jt, lt] 6=
s[jt+1, lt+1].

The above definition generalizes those definitions made and
used in Sections IV-A and IV-C for finding cycles in higher-
weight QC LDPC codes. In those sections the ordered set
O and coefficient indicesS were first introduced and their
characteristics were described. For examples ofO see (10),
(13), and (15), and for those ofS see (11), (12), and (16).
These examples illustrate the reasoning behind criteria (1)–(8)
in the definition above.
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We now state the conditions for a length-2Λ path P =
{O,S} actually to correspond to length-2Λ cycles in the
Tanner graph. Consider the following alternating sums, one
for eachk, 1 ≤ k ≤ K:

Σ[k] =

2Λ
∑

t=1

(−1)tsk[jt, lt]. (29)

As reflected in the following theorem, these sums are the
generalization of the sum in (9) to HQC LDPC codes.

Theorem 1:A path length-2Λ pathP = {O,S} through the
K-variateJ[K] ×L[K] polynomial parity check matrix matrix
H(·) correspond to length-2Λ cycles in the Tanner graph if
and only if for everyk, 1 ≤ k ≤ K,

Σ[k] mod p[k] = 0. (30)

Proof: First consider the case whereK = 1, i.e., anon-
hierarchical QC LDPC code for which (30) corresponds to
Fossorier’s condition. Recall the logic of Section IV. In this
setting if condition (30) isnot satisfied, then the column of
the polynomial parity check matrix from which the path orig-
inates is distinct from the one on which the path terminates.
Since distinct columns of the polynomial parity check matrix
correspond to distinct sets of variable nodes in the Tanner
graph, this means that if (30) is not satisfied the path does not
correspond to a set of cycles.

In general, what condition (30) is helping us to understand is
whether, in the expanded parity check matrix at thenext lower
level, the path through the polynomial parity check matrix
corresponds to a set of path through the parity check matrix
that all correspond to cycles in the Tanner graph. In the case
of a non-hierarchical QC LDPC code there is only one level
of expansion, from the polynomial parity check matrix to the
parity check matrix. However, in an HQC LDPC code there
are multiple levels of expansion.

Now consider HQC LDPC codes whereK > 1. Given any
path consider whether condition (30) holds fork = K. If the
condition does not hold then, similar to Fossorier’s logic,the
path through the parity-check matrix at the next lower level,
i.e., through the level-(K−1) polynomial parity check matrix,
will not start and end in the same column. In the hierarchical
setting each column at levelK − 1 corresponds to a set of
variable nodes. However, due to the way we expand out the
parity-check matrix using Kronecker products in Definition1,
the sets of variable nodes corresponding to distinct columns
of the level-k polynomial parity check matrix for any givenk
are non-intersecting. A path that originates and terminates in
distinct subsets of the variable nodes cannot correspond toa
set of cycles. Thus, if (30) does not hold fork = K, the path
cannot correspond to a set of cycles.

On the other hand, if (30) is satisfied fork = K then cycles
may exist, depending on what happens at the lower levels.
Using the same argument we recurse down the levels from
k = K to k = 1. If there is anyk for which (30) is not
satisfied then the path originates from and terminate at distinct
variable nodes and therefore does not correspond to a set of
cycles. However, if (30) is satisfied for allk, 1 ≤ k ≤ K, then

the path originates and terminates on the same variable node
and cycles exists.

We immediately have the following theorem.
Theorem 2:A necessary and sufficient condition for aK-

level hierarchical QC LDPC code to have girth at least2(Λ+1)
is the following. For all paths through the polynomial parity
check matrix of length at most2Λ (path length at least four
and at most2Λ), condition (30) does not hold for at least one
k, 1 ≤ k ≤ K.

B. Examples

We now give examples of two paths through the polynomial
parity check matrix of the code of Example 2. In the first
we describe a path that corresponds to cycles through the
Tanner graph. We first consider the code as a QC LDPC
code (ignoring its hierarchical structure) and use Fossorier’s
condition to verify the existence of cycles. We then look at
the same code from a hierarchical perspective to illustrate
Theorem 2. In the second example we consider a path through
the same code that does not correspond to a cycle through the
Tanner graph.

Example 4: (Cycle in an HQC LDPC code)Consider again
the polynomial parity check matricesH(x) and H(x, y),
respectively specified in (18) and (19). First consider the non-
hierarchical description of the code specified byH(x). A cycle
of length-four exists traversing the pathP = {O,S} where

O = {(0, 0), (1, 0), (1, 5), (0, 5)}.

This corresponds to, in order, the four polynomials

x6 = c6[0, 0] x6,
x + x7 = c1[1, 0] x + c7[1, 0] x7,
x = c1[1, 5] x,
1 + x2 = c0[0, 5] x0 + c2[0, 5] x2.

Selecting outc6[0, 0], c7[1, 0], c1[1, 5] and c0[0, 5] means we
choose

S = {6, 7, 1, 0}.

We calculate the sum in (29) to be

Σ[1] mod 8 = (−6 + 7 − 1 + 0) mod 8 = 0, (31)

wherep[1] = 8 for this code. This example confirms, in the
general notation, the test for cycles in non-hierarchical QC
LDPC codes already discussed in Sec. IV-A.

Now, consider the same cycle from the hierarchical per-
spective. With respect to the two-level representationH(x, y)
of (19) the same cycle through the Tanner graph corresponds
to the ordered series

O = {(0, 0), (0, 0), (0, 1), (0, 1)}.

Now we have polynomialsx6 +(x+x7)y and(1+x2)y+xy2

which, respectively, are

c6,0[0, 0] x6 + c1,1[0, 0] xy + c7,1[0, 0] x7y,

and

c0,1[0, 1] y + c2,1[0, 1] x2y + c1,2[0, 1] xy2.
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The same cycles correspond to the coefficient indices

S =

{[

6
0

]

,

[

7
1

]

,

[

1
2

]

,

[

0
1

]}

.

Note that the first sub-index of each coefficient corresponds
to the sub-index of the coefficients selected at the one-level
view. The alternating sums along the path are

Σ[1] mod 8 = (−6 + 7 − 1 + 0) mod 8 = 0

Σ[2] mod 3 = (−0 + 1 − 2 + 1) mod 3 = 0

where p[1] = 8 and p[2] = 3 for this code. While we do
not work out the example for the three-level representation
H(x, y, z) of (20), we note that the ordered traversed by this
cycle would beO = {(0, 0), (0, 0), (0, 0), (0, 0)}.

Example 5: (Non-cycle in an HQC LDPC code)We now
provide an example of a path throughH(x, y) for which
Σ[1] = 0 mod p[1] but Σ[2] 6= 0 mod p[2]. Let the ordered
set beO = {(0, 0), (1, 0), (1, 1), (0, 1)}. This corresponds to
polynomialsx6 +(x+x7)y, (1+x2)y +xy2, x6 +(x+x7)y,
and(1+x2)y+xy2. We select the set of set coefficient indices
to be

S =

{[

6
0

]

,

[

2
1

]

,

[

6
0

]

,

[

2
1

]}

,

from which we can verify thatΣ[1] = 0 mod 8 but Σ[2] 6=
0 mod3. Hence while condition (30) holds at level one, it does
not hold at level two. Referring to the expandedH(x) in (18)
one can confirm this conclusion using the logic of Sec. IV-
A. In particular,x2 is located in the sixth column of the first
row of H(x), while the polynomialx6 traversed by the path
is located in the fifth column of the fifth row ofH(x).

C. Inevitable cycles in HQC LDPC codes

Since HQC LDPC codes are QC LDPC codes, they also
have inevitable cycles. In this section we describe how the
logic and results of Sec. IV-C regarding inevitable cycles
extend to HQC LDPC codes. We illustrate the logic for specific
examples of HQC LDPC codes that we will use in our design
pipeline presented in Sec. VIII.

Recall that in Sec. IV-C we discussed two classes of
inevitable cycles. We first saw that there will inevitably be
cycles of length six in any weight-III QC LDPC code. We
also saw that the code will have eight-cycles if the polynomial
parity check matrixH(·) of a weight-II QC LDPC code
contains two weight-two polynomials in any row or in any
column.

We analogously find that there will inevitably be cycles of
length six for an HQC LDPC code if any labeled treeTj,l

in the tree matrix defining the code hasthree leaves. There
will inevitably be eight-cycles if, in any row or in any column
of the matrix of labeled trees defining the HQC LDPC code,
there is apair of labeled treesboth having two leaves. In terms
of the polynomial parity check matrixH(·) in K variables the
former means that one of the polynomials has three terms
(cf. Ex. 7, below), and the latter means that in some column
or row there is a pair of polynomials having two terms each
(cf. Ex. 6, below). We also note that if the three leaves (or
the two pairs of leaves each) are siblings of the same parent

A1 A2 A3

a1 a2 a3

Fig. 6. The labeled trees in a restricted two-level HQC LDPC code will all
have two levels, with each node at the bottom level having exactly one leaf
below it.

node, than this would be a weight-III (weight-II) QC LDPC
code, and the conditions of the last paragraph would apply.
However, the sibling condition is not required for inevitable
cycles to exist.

The logic behind these statements is almost identical to the
earlier case. We describe it completely for the first situation.
We pick a length-six ordered seriesO equal to (13), i.e.,
O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)}, where (j, l) is
the index of the labeled treeTj,l that has three leaves.
Let the three length-K coefficient vectors correspond to the
three leaves besa, sb, sc and select the coefficient setS =
{sa, sb, sc, sa, sb, sc}. Then, because each element is both an
even and an odd element of the set, (30) is satisfied for everyk,
just as it was in the QC LDPC example of (14). The logic for
automatic eight-cycles follows from the analogous extensions
of the choices made in (15) and (16).

We now illustrate these points about inevitable cycles for
a subclass of two-level HQC LDPC codes that are described
solely by labeled trees with weight-one at the bottom level.
That is, none of the leaves of the trees have siblings. In
Sec. VIII-A we name such codesrestricted two-level HQC
LDPC codes. An example of such a tree is given in Fig. 6

Example 6: (Inevitable length-six cycle in HQC LDPC
codes)First consider any code containing a tree of the type
illustrated in Fig. 6. This code has three leaves and so,
according to our discussion, the code must contain six cycles.
Without loss of generality, let such a tree be located in row
j and column l of the parity check matrixH(x, y). The
polynomial has the form

xa1yA1 + xa2yA2 + xa3yA3 .

As discussed above, choose the ordered seriesO to be

O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)} (32)

and the ordered set of coefficient vectors to be

S =

{[

a1

A1

]

,

[

a2

A2

]

,

[

a3

A3

]

,

[

a1

A1

]

,

[

a2

A2

]

,

[

a3

A3

]}

. (33)

Cycles inevitably exist because

(−a1 + a2 − a3 + a1 − a2 + a3) mod p[1] = 0,

(−A1 + A2 − A3 + A1 − A2 + A3) mod p[2] = 0,
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regardless of the values of the coefficients or ofp[1] or p[2].
Example 7: (Inevitable length-eight cycle in HQC LDPC

codes)Now suppose that the parity check matrix of a restricted
two-level HQC LDPC code contains two labeled trees in the
same row or column where both trees are similar to the one
depicted in Fig. 6, but with only two leaves each.

Suppose that the two weight-two polynomials are in
the same rowj but in two different columnsl1 and l2.
Let the polynomial at (j, l1) be xa1yA1 + xa2yA2 and
let the polynomial at(j, l2) be xb1yB2 + xb2yB2 . Con-
sider the same ordered series as in (15), i.e.,O =
{(j, l1), (j, ll), (j, l2), (j, l2), (j, l1), (j, l1), (j, l2), (j, l2)}, and
choose the ordered set of coefficient indices to be

S =

{[

a1

A1

]

,

[

a2

A2

]

,

[

b1

B1

]

,

[

b2

B2

]

,

[

a2

A2

]

,

[

a1

A1

]

,

[

b2

B2

]

,

[

b1

B1

]}

.

(34)
Eight cycles are inevitable because

(−a1+a2−b1+b2−a2+a1−b2+b1) modp[1] = 0,

(−A1+A2−B1+B2−A2+A1−B2+B1) modp[2] = 0,

regardless of the values of the coefficients or ofp[1] or p[2].
Although it is not our main focus, we note that there will

be structures in tree matrices that also give rise to inevitable
10-cycles and 12-cycles. For example, if there is a2 × 3 or
3×2 sub-matrix where all the entries contain trees with at least
one leaf, one inevitably obtains 12-cycles, analogously tothe
situation described in Section IV-C for ordinary weight-I QC
LDPC codes.

VII. M AXIMIZING THE GIRTH OF QC LDPCCODES

In this section we present the ideas behind our girth-
maximizing algorithms for QC LDPC and for HQC LDPC
codes. The latter is a generalization of the former, presented
in part in [1]. These algorithms can rid the codes of all non-
inevitable cycles. In Sec. VIII we will describe a secondary
procedure for ridding the codes of their inevitable cycles.
As the details of the algorithms are somewhat involved, we
choose only to describe the basic ideas in the main text, and
defer to the appendices the details. The overall algorithmsare
described in Appendix A while in Appendices B–D we de-
scribe the subroutines that contain much of the computational
complexity (and descriptive intricacies).

In Section VII-A we describe the general idea of the
algorithms, which applies both to QC and to HQC LDPC
codes. Then, in Section VII-B we give more detail for the
case of weight-I QC LDPC codes. The discussion of the
generalization to HQC LDPC codes (which includes higher-
weight QC LDPC codes as a special case) is deferred to the
appendices.

A. Girth maximization using hill climbing

The general idea of our algorithm (for both QC and HQC
LDPC codes) is as follows. We start by specifying the desired
tree topology of the code by specifying a set of|T | unlabeled
trees. We initialize our algorithm with a code chosen randomly
from the ensemble of codes that have the desired tree topology.

This means that we randomly assign labels to the treesT
subject to the constraints that sibling edges must have distinct
labels.

Our algorithm iteratively updates a sequence of edge labels.
At each iteration it changes the single edge label to the value
that effects the greatest reduction in a cost function. The cost
function we use depends on the number of cycles in the current
code that have length less than the desired girth. Shorter
cycles are weighted to be more costly than longer cycles.
The algorithm terminates when either (a) the current values
of all coefficients give zero cost (and thus the code has the
desired girth), or (b) when we can no longer change any single
coefficient to a value that further reduces the cost (and thusthe
number of undesired cycles). When the tree topology of the
code implies the existence of inevitable cycles (b) will always
be the stopping criterion. Updates are performed subject to
the sibling constraint on edge labels. This preserves the tree
topology of the code and thus, e.g., the protograph structure
of the code is an invariant under the updates. We note that a
change in a single edge label will, in general, have a trickle-
down effect on a number of code coefficients (equal to the
number of leaves in the tree that are a descendent of that
edge).

The main challenge in implementing the algorithm lies in
book-keeping: tracking how many cycles of each length the
current code contains, and what the resulting number of cycles
will be if each edge label is changed to each of its other
possible value. The calculation becomes particularly involved
when one searches for codes of girth10 (which is the largest
girth for which we have so far implemented our algorithm)
because of the many possible ways that eight-cycles can form.

B. Girth maximizing algorithm for QC LDPC codes

In this section we present the main algorithmic ideas in
the simplified setting of weight-I QC LDPC codes. This
simplification also reduces notation. For the duration of this
section, we setp[1] = p, L[1] = L, J[1] = J . Further, path
elements are scalars sos[j, l] = s[j, l]. In a weight-I QC LDPC
each treeTj,l has a single edge andcs[j, l] 6= 0 for at most
one value ofs (if Tj,l = ∗ thencs[j, l] = 0 for all s). The set
of other possible edge labels are the set ofz, 0 ≤ z ≤ p − 1,
such thatz 6= s (there are no sibling edges so there are no
further constraints on the choice ofz).

We now define a set of cost vectors, each of which tracks the
cost (in terms of the weighted sum of the number of cycles) of
changing any edge label to each of its other possible values.
In particular, for each edge in eachTj,l 6= ∗ we define

Γj,l = [γ0, γ1, · · · , γp−1], (35)

whereΓj,l(z) is the cost we pay for assigningcz[j, l] = 1 for
each value ofz for 0 ≤ z ≤ p−1. If the desired code girth isg
then the costΓj,l is a linear function of the number of cycles
of each length that results from each possible choice forz.
The weight vectorw = [w2, w3, · · · , wg/2−1] defines the cost
function, wherewΛ is the cost assigned to each length-2Λ
cycles.
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It is useful to visualize the set of cost vectors as a matrix
of vectors. For example, a regular(3, 6) LDPC code can be
represented as





Γ1,1 Γ1,2 Γ1,3 Γ1,4 Γ1,5 Γ1,6

Γ2,1 Γ2,2 Γ2,3 Γ2,4 Γ2,5 Γ2,6

Γ3,1 Γ3,2 Γ3,3 Γ3,4 Γ3,5 Γ3,6



 . (36)

Given a parity check matrixH and desired girthg, the cost
vectors are calculated via the following argument. We consider
the set of all possible and distinct length-2Λ paths per Def. 4,
i.e.,

PΛ = {P} = {O,S} s.t. |O| = |S| = 2Λ for all P ∈ PΛ,

for Λ = 1, . . . , g/2. For each pathP ∈ PΛ and each(jt, lt) ∈
O we consider the corresponding coefficients[jt, lt] ∈ S.
Assuming all otherdistinct coefficientss[jt′ , lt′ ] for t′ 6= t
are kept fixed we note the “guilty” value(s) ofs[jt, lt] to be
the valuez, 0 ≤ z ≤ p− 1, such that ifs[jt, lt] were changed
to z, then condition (30) would be satisfied. In other words, a
cycle would result.

For example, for a potential six-cycle, we know that a cycle
will exist if and only if −s[j1, l1] + s[j2, l2] − s[j3, l3] +
s[j4, l4]−s[j5, l5]+s[j6, l6] modp = 0. Suppose, for example,
that the current summed value of−s[j1, l1] + s[j2, l2] −
s[j3, l3] + s[j4, l4] − s[j5, l5] + s[j6, l6] mod p is equal to
one. Then, the guilty values fors[j1, l1], s[j3, l3], ands[j5, l5]
would be one less than their respective current values, and the
guilty values fors[j2, l2], s[j4, l4], ands[j6, l6] would be one
greater than their respective current values.

Computing “guilty” values is relatively uncomplicated for
paths consisting of2Λ distinct elements. It becomes more
complicated if some elements of the path appear more than
once. This can occur in potential eight-cycles and occurs, e.g.,
in the second example of Fig. 3. In such cases, we must
keep in mind that when such coefficients are changed, the
contribution to alternating sum can double, triple (e.g., in the
length-12 cycle of Fig. 3 because the path passes through
each sub-matrix three times), or contribute even more times.
Alternately, repeated elements can also cancel (if they enter
modulated by both+1 and −1), not contributing at all to
the sum. We deal with this complexity in Appendix B by
defining the “multiplicity”κ of a path element; used in the cost
calculating algorithms subsequently specified in Appendices C
and D.

VIII. D ESIGN PIPELINE FOR HIGH-GIRTH QC LDPC
CODES

In this section we describe our design procedure for high-
girth QC LDPC codes. We pause to recall the overall objective
of the paper. We want to be able to map any interesting
existing code design specified by a protograph into a high-
girth QC code. As mentioned earlier, the protographs that
motivate us are those of spatially-coupled codes. These codes
have excellent theoretical and empirical performance in the
waterfall regime. Furthermore, they can be specified to have
a wide range of rates and lengths. However, the protograph
of a spatially-coupled code will have multiple edges between

variable and check nodes. Thus, a QC LDPC codes created via
a simple lifting operation would suffer from inevitable cycles.
Through our procedure we want to deliver a high-girth code
that will also have good performance in the error-floor regime.
In Section IX we design such spatially-coupled codes, for a
variety of girths, and illustrate the error-floor improvement due
to increased girth.

We first show how to map such a protograph into an
“inflated” HQC LDPC code structure, on which we can use
the girth maximizing algorithm of Sec. VII to remove all non-
inevitable cycles. We then show how the resulting HQC LDPC
codes can be “squashed” down to yield a non-hierarchical QC
LDPC code which no longer contains the inevitable cycles and
which is a member of the family of codes described by our
protograph. The subclass of HQC LDPC codes with which we
work are therestricted two-level HQC LDPC codes, already
mentioned briefly in the examples of Sec. VI-C.

It is worth mentioning a couple related techniques. In
[37], a “masking” technique was introduced which zeroes out
particular elements of the base matrix of a weight-I QC LDPC
code to improve its girth. Of course, this has the effect of
changing the code structure, while the intent in our method is
to maintain the input code structure. In [38], a two-step lifting
procedure is applied to weight-I QC LDPC codes which allows
the resulting code to exceed bounds on minumum distance that
apply to ordinary QC LDPC codes. However, the technique
was only applied to codes based on protographs that never
had more than one edge connecting two nodes.

The outline of the section is as follows. In Sec. VIII-A we
fully define the class of restricted two-level HQC LDPC codes.
In Sec. VIII-B we show how to lift any protograph into such
a code. In Sec. VIII-C, we describe the squashing procedure,
and finally in Sec. VIII-D, we explain the full design pipeline,
including “inflating” the incidence matrix corresponding to the
protograph, lifting the inflated incidence matrix into a family
of restricted two-level HQC LDPC codes, maximizing the
girth over that family, and squashing the resulting HQC LDPC
code.

A. Restricted two-level HQC LDPC codes

As “restricted two-level” implies, the hierarchy in restricted
two-level HQC LDPC codes has only two levels. The addi-
tional “restriction” is that the weight of the first (lowest)level
must be one. In terms of the tree structure description of these
codes, the labeled trees will all have a form like that shown in
Fig. 6, with the nodes at the bottom level each having exactly
one leaf, i.e., leafs have no siblings. In comparison, thereare
leaves in left-hand tree of Fig. 4 that do have siblings. Nodes
at the second level can have an arbitrary number of edges.

The fact that these codes have two levels means that they are
described by a polynomial parity check matrix in two dummy
variablesH(x, y). The restriction to the lowest level having
weight one means that any weight-w polynomial in the matrix
H(x, y) must have the form

xa1yA1 + xa2yA2 + ... + xawyAw (37)

where all theAi exponents must be distinct. As usual, the
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exponents are integers which range between0 andp[1]−1 for
the x exponents and0 andp[2] − 1 for the y exponents.

Because the weight at the lowest level is restricted to be one,
these codes, when described as standard QC LDPC codes, look
like weight-I QC LDPC codes, whose base matrix is composed
of circulant sub-matrices of sizep[2] by p[[2]]. In [35] Smaran-
dache and Vontobel briefly introduce a further restricted class
of such QC LDPC codes in the context of designing codes
of large minimum distance. They also required that the codes
be weight-II at the second level and thatp[2] = 2, which they
term “type-I QC codes based on double-covers of type-II QC
codes.” They do allow for generalization beyondp[2] = 2 to
p[2] = M which, for M = 4, is the starting point of our
design.

B. Transforming protographs into Restricted Two-Level HQC
LDPC Codes

Recall that in Sec. III, we introduce a graph lifting trans-
formation to convert a protograph into an ordinary QC LDPC
code. The transformation replaces the incidence matrix equiv-
alent to the protograph with a polynomial parity check matrix
H(x) whose polynomial entries had weight equal to the entries
in the incidence matrix. A completely analogous transforma-
tion exists for converting protographs into restricted two-level
HQC LDPC codes. One replaces the incidence matrix with
a bi-variate polynomial parity check matrixH(x, y) whose
polynomial entries each have the restricted form of (37) and
have weight equal to the entries in the incidence matrix.

For example, the incidence matrix corresponding to the
protograph depicted in Fig. 1 is

P =

[

1 1 1
0 1 2

]

. (38)

This matrix is lifted into a two-level restricted HQC LDPC
code with polynomial parity check matrix

H(x, y) =

[

xayA xbyB xcyC

0 xdyD xeyE + xfyF

]

, (39)

wherea, b, c, d, e, and f are integer exponents between0
andp[1]−1, andA, B, C, D, E, andF are integer exponents
between0 andp[2] − 1 that satisfyE 6= F .

C. Squashing sets of trees to eliminate inevitable cycles

Because restricted two-level HQC LDPC codes are weight-
I at the lowest level, they can also be considered weight-I
QC LDPC codes, and can therefore be described in terms of
their base matrix.1 In this section we develop a technique that
selectively removes rows or columns from the base matrix
describing a restricted two-level HQC LDPC code in a way
that eliminates all inevitable six- and eight-cycles from the
corresponding Tanner graphs of the code. There are two
underlying assumptions in this section. First, that via a girth-
maximization procedure the base matrix entries involved have
already been optimized to eliminate all non-inevitable cycles.

1Recall from Sec. II that the base matrix is the matrix of powers of the
polynomial parity check matrix expressed in a single dummy variable.

Second, we concentrate on restricted two-level HQC LDPC
codes wherep[2] = 4, which implies that the base matrix is
composed of circulant sub-matrices of size four by four.

There are two situations we will want to consider. Respec-
tively they will correspond to Ex. 6 and 7 of Sec. VI-C. The
full connection to these examples will only become clear in
the next section, when we explain our “inflation” procedure,
which has the effect of placing pairs of similarly structured
four by four sub-matrices on top of each other (or besides
each other).

The first situation involves a polynomial of weight 3 in the
polynomial parity check matrixH(x,y), which after inflation
will be converted into two polynomials of weight 3, e.g.,
h1,1(x, y) and h2,1(x, y), with identical y exponents, in the
same column of the polynomial parity check matrix. Assuming
a restricted two-level code withp[2] = 4, the corresponding
sub-matrices in the base matrix would respectively look some-
thing like









a b c −1
−1 a b c
c −1 a b
b c −1 a

















d e f −1
−1 d e f
f −1 d e
e f −1 d









, (40)

where we recall that−1 represents thep[1] × p[1] all-zeros
matrix. These sub-matrices are obtained from lifting the poly-
nomials h1,1(x, y) = xa + y2xc + y3xb and h2,1(x, y) =
xd + y2xf + y3xe.

The second situation involves four polynomials of weight
2 arranged rectilinearly, e.g.,h1,1(x, y), h2,1(x, y), h1,2(x, y)
and h2,2(x, y),. Furthermore, after inflation, they exponents
of the polynomials in the same column will have the same
exponents, so that the corresponding sub-matrices would look
something like








a b −1 −1
−1 a b −1
−1 −1 a b
b −1 −1 a

















−1 c d −1
−1 −1 c d
d −1 −1 c
c d −1 −1

















e f −1 −1
−1 e f −1
−1 −1 e f
f −1 −1 e

















−1 g h −1
−1 −1 g h
h −1 −1 g
g h −1 −1









.

(41)
By the results of Sec. VI-C the first situation contains six-

cycles within each sub-matrix and the second situation con-
tains inevitable eight-cycles between the pair of sub-matrices
in each row and in each column. We argue that if we “squash”
the two matrices in the first example—by stacking the first two
rows of the upper matrix on the last two rows of the lower
matrix—then the matrix produced









a b c −1
−1 a b c
f −1 d e
e f −1 d









(42)
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contains no six-cycles. Similar if we squash the matrices in
the second example then the resulting pair of matrices








a b −1 −1
−1 a b −1
−1 −1 e f
f −1 −1 e

















−1 c d −1
−1 −1 c d
h −1 −1 g
g h −1 −1









(43)

contains no eight-cycles.
Since by assumption there were no non-inevitable six-

or eight-cycles between the original matrices, to show our
assertion we need solely to demonstrate that the squashing
procedure removes all inevitable cycles. We argue this based
on the following lemma, proved in Appendix E.

Lemma 2:
(i) Any inevitable six-cycle within a polynomial of the form

xa1yA1 + xa2yA2 + xa3yA3 traverses three distinct rows
and three distinct columns of the corresponding base
matrix.

(ii) Any inevitable eight-cycles between a pair of polynomials
of the form xa1yA1 + xa2yA2 and xb1yB1 + xb2yB2

located in the same row (column) of the polynomial parity
check matrix traverses three distinct rows (columns) of
the corresponding base matrix.

Now, consider the squashing of the matrices in (40) into the
matrix in (42). Note that the latter matrix has onlytwo rows
from each of the matrices in (40). However, by Lemma 2-(i)
all inevitable cycles pass through three rows. Therefore, the
matrix in (42) does not contain any inevitable six-cycles.

Next, consider the squashing of the matrices in (41) into the
matrices in (43). First we show that the squashing procedure
eliminate the automatic cycles between pairs of matrices
arising from pairs of weight-2 polynomials on the same row
of the polynomial parity check matrix. This follows from
Lemma 2-(ii) which tells us that these eight-cycles traverse
three distinct rows, because only two rows of each of the ma-
trices is retained. Next consider the inevitable cycles between
pairs of matrices arising from pairs of weight-2 polynomials
in the same column of the polynomial parity check matrix.
Since we squash vertically, parts of all columns of the base
matrix are retained. However, if one examines (43) one sees
that the second and fourth columns of the left-hand matrix
only includes contributions from the upper left-hand and
bottom-left-hand matrices of (41), respectively. The remaining
inevitable cycles from (41) therefore cannot include these
columns. But, that leaves only two columns in the left-hand
matrix and by Lemma 2-(ii) we know that these inevitable
cycles require three columns. Therefore the inevitable cycles
have been eliminated. The same logic holds for the right-hand
side of (43).

Note that for the above logic regarding eight-cycles to hold
it is important that they-exponents of the two matrices to be
squashed together (those in the same column) are the same.
Thus, the two matrices should represented by polynomials of
the formxayA+xbyB andxeyA+xfyB, which share the same
y exponents. Note also that the same squashing procedure
would work in the horizontal direction as long as the matrices
on the same row have the samey-exponents. The logic is the
same with the argument for rows and columns reversed.
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Fig. 7. The design procedure to produce high-girth codes. The inputs are a
protograph and the dimension of the first-level circulant matrices. The output
is a weight-I QC LDPC code.

D. Design procedure for high-girth codes

We now turn to demonstrating how to construct a weight-I
QC LDPC code that does not have any six-cycles or eight-
cycles. We first sketch the procedure, depicted in Fig. 7 and
then illustrate the details with a worked design example.

Roughly speaking the procedure will start with a desired
protograph and code parameterp[1] (our procedure assumes
p[2] = 4). We first map the protograph into a incidence matrix,
cf. (38). Depending on the weight and relative locations of
the entries in the incidence matrix, we “inflate” the incidence
matrix. We then use the lifting transformation of Sec. VIII-B to
produce a polynomial parity check matrix for a restricted two-
level HQC LDPC code. Next, using our max girth algorithm
we eliminate all non-inevitable six- and eight-cycles. Finally,
we use the squashing procedure of Sec. VIII-C to eliminate
inevitable cycles. Of course, the way in which we inflate the
code must be compatible with the way we squash the code to
produce a valid parity check matrix that meets the parameters
of interest.

It should be emphasized that the LDPC code resulting from
this procedure will be a QC LDPC and not ahierarchicalQC
LDPC code, although the final structure will be quite similarto
that of an HQC LDPC code. Note also that although a lifting
procedure is being applied, that does not necessarily mean
that the resulting code must have very large block-lengths,as
the increase in the number of sub-matrices may be partially
or entirely compensated for by a decrease in the size of the
sub-matrices that is required to obtain a desired girth.

1) Inflate incidence matrix: As indicated, the procedure
first produces the incidence matrixP of the protograph, which
we assume has no entries greater than 3. (We make no effort
here to deal with inevitable cycles caused by weights greater
than 3). The “inflation” procedure works as follows. We fist
mark for duplication each row of the matrix with two or more
elements of value 2 or greater or a single element of value
3. We also mark for duplication each column that has two
or more elements of value 2 or greater. Then we inflateP to
produce a new incidence matrixP′ in which each of the rows
in P marked for duplication are duplicated. We then inflate
again to produceP′′ from P′ by duplicating each of the marked
columns. As will be evident when we get to squashing, we
must track in the matricesP′ andP′′ which rows and columns
are duplicated versions of each other. The following example
illustrates the inflating procedure.
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Example 8:Suppose we start with a protograph that has the
incidence matrix

P =

[

3 2 1
0 2 1

]

. (44)

The first row in this incidence matrix contains an element with
value 3 (and also two elements of value 2 or greater), so we
mark it, and we also mark the second column because it has
two elements with value 2 or greater. Duplicating the first row,
we obtain

P′ =





3 2 1
3 2 1
0 2 1



 . (45)

Now duplicating the second column, we obtain the inflated
incidence matrix

P′′ =





3 2 2 1
3 2 2 1
0 2 2 1



 . (46)

In P′′, the first and second rows, and also the second and third
columns, are tracked as duplicated versions of each other.

2) Lift P ′′ into H ′′(x, y): Next we lift the inflated incidence
matrix P′′ into the polynomial parity check matrixH′′(x, y)
for a two-level restricted HQC LDPC code withp[2] = 4. We
perform this transformation under one additional restriction.
The restriction is that they exponents in pairs of duplicated
rows or pairs of duplicated columns must be identical to each
other. The value ofp[1] is left as a design parameter.

Example 8 (continued):The inflated incidence matrixP′′ is
lifted into a polynomial parity check matrixH′′(x, y), yielding
the form

H′′(x, y) =

[

xayA+xbyB+xcyC xdyD+xeyE xf yD+xgyE xhyH

xiyA+xjyB+xkyC xlyD+xmyE xnyD+xoyE xpyH

0 xqyQ+xryR xsyQ+xtyR xuyU

]

.

Notice that they exponents in the first and second row and
in the second and third columns of this matrix have been
restricted to be identical to each other. Otherwise, all the
exponents are free parameters that satisfy0 ≤ ai ≤ p[1] − 1
for any x exponentai and 0 ≤ Ai ≤ p[2] − 1 = 3 for any y
exponentAi.

3) Maximize the code’s girth: In the next step we apply
the girth-maximization algorithm of Sec. VII to produce a
set ofx-exponentsai andy-exponentsAi such that no short
cycles exist except those that are inevitable. Of course, the hill-
climbing algorithm of Sec. VII is just one possible approach.
Other algorithms could be used in its place. The polynomial
parity-check matrixH′′(x, y) obtained in this manner can be
converted into an equivalent base matrixB′′ for a weight-I QC
LDPC code.

Example 8 (continued):Using our girth-maximizing algo-
rithm, we find that withp[1] = 200 the following choices for
the x and y exponents inH′′(x, y) will create no six-cycles
or eight-cycles except for inevitable short cycles:
[

x82y1+x131y2+x72y3 x79y+x189y2 x91y+x30y2 x162y

x162y1+x44y2+x137y3 x17y+x14y2 x54y+x148y2 x157y

0 x100y0+x96y3 x13y0+x150y3 x141y3

]

.

The code with the above polynomial parity check matrix is
equivalent to a standard weight-I QC LDPC code with base
matrix B′′ given by


















−1 72 131 82 −1 −1 189 79 −1 −1 30 91 −1 −1 −1 162
82 −1 72 131 79 −1 −1 189 91 −1 −1 30 162 −1 −1 −1
131 82 −1 72 189 79 −1 −1 30 91 −1 −1 −1 162 −1 −1
72 131 82 −1 −1 189 79 −1 −1 30 91 −1 −1 −1 162 −1
−1 137 44 162 −1 −1 14 17 −1 −1 148 54 −1 −1 −1 157
162 −1 137 44 17 −1 −1 14 54 −1 −1 148 157 −1 −1 −1
44 162 −1 137 14 17 −1 −1 148 54 −1 −1 −1 157 −1 −1
137 44 162 −1 −1 14 17 −1 −1 148 54 −1 −1 −1 157 −1
−1 −1 −1 −1 100 96 −1 −1 13 150 −1 −1 −1 141 −1 −1
−1 −1 −1 −1 −1 100 96 −1 −1 13 150 −1 −1 −1 141 −1
−1 −1 −1 −1 −1 −1 100 96 −1 −1 13 150 −1 −1 −1 141
−1 −1 −1 −1 96 −1 −1 100 150 −1 −1 13 141 −1 −1 −1



















.

(47)
Notice that the base matrixB′′ is composed of4 by 4 circulant
sub-matrices.

4) Squash the base matrix to remove inevitable cycles:
We now have a base matrixB′′ corresponding to the inflated
incidence matrixP′′. The next steps in our procedure will
remove columns and rows fromB′′ to obtain a base matrix
corresponding to our original incidence matrixP.

First, we note that each column of the incidence matrix
P′′ corresponds to four columns in the base matrixB′′. In
the next step of our procedure, we focus on the columns that
have been marked as duplicates inP′′. We retain the left two
columns and remove the right two columns inB′′ from the
four that correspond to the left column of a duplicated pair in
P′′, and also remove the left two columns but retain the right
two columns inB′′ from the four that correspond to the right
column of a duplicated pair inP′′. We call the thinned-out
base matrix that is obtained from this procedureB′.

Example 8 (continued):Recall that the second and third
columns ofP′′ given in equation (46) have been marked as
duplicates of each other. So to obtainB′ from the base matrix
B′′ given in equation (47), we retain the left two columns from
the second four inB′, and the right two columns from the third
four in B′, so thatB′ is given by

B′ =



















−1 72 131 82 −1 −1 30 91 −1 −1 −1 162
82 −1 72 131 79 −1 −1 30 162 −1 −1 −1
131 82 −1 72 189 79 −1 −1 −1 162 −1 −1
72 131 82 −1 −1 189 91 −1 −1 −1 162 −1
−1 137 44 162 −1 −1 148 54 −1 −1 −1 157
162 −1 137 44 17 −1 −1 148 157 −1 −1 −1
44 162 −1 137 14 17 −1 −1 −1 157 −1 −1
137 44 162 −1 −1 14 54 −1 −1 −1 157 −1
−1 −1 −1 −1 100 96 −1 −1 −1 141 −1 −1
−1 −1 −1 −1 −1 100 150 −1 −1 −1 141 −1
−1 −1 −1 −1 −1 −1 13 150 −1 −1 −1 141
−1 −1 −1 −1 96 −1 −1 13 141 −1 −1 −1



















.

Now note that each row in the incidence matrixP′ corre-
sponds to four rows in the base matrixB′. In the final step of
our procedure, we focus on the rows that have been marked
as duplicates inP′. We retain the top two rows inB′ from
the four that correspond to the top row in a duplicated pair
in P′, and we retain the bottom two rows inB′ from the four
that correspond to the bottom row of a duplicated pair inP′.
We call the base matrix obtained by this further thinning-out
procedureB; this is the base matrix that will correspond to
our original incidence matrixP.

Example 8 (continued):The first and second rows ofP′

given in equation (45) have been marked as duplicates. That
means that we should retain the top two rows of the first group
of four rows fromB′, and the bottom two rows from the second
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group of four rows. Thus, we obtain

B =











−1 72 131 82 −1 −1 30 91 −1 −1 −1 162
82 −1 72 131 79 −1 −1 30 162 −1 −1 −1
44 162 −1 137 14 17 −1 −1 −1 157 −1 −1
137 44 162 −1 −1 14 54 −1 −1 −1 157 −1
−1 −1 −1 −1 100 96 −1 −1 −1 141 −1 −1
−1 −1 −1 −1 −1 100 150 −1 −1 −1 141 −1
−1 −1 −1 −1 −1 −1 13 150 −1 −1 −1 141
−1 −1 −1 −1 96 −1 −1 13 141 −1 −1 −1











.

Notice that the code defined by the final base matrixB is
not a hierarchical QC LDPC code, because that base matrix
is constructed from 4 by 4 sub-matrices that are not circulant.
Still, the code is a member of the class defined by the original
protograph. In our example, each group of four rows and four
columns in the base matrix defines a type of check or bit. So
in our example, from the structure ofB, each check of the
first type will be connected to three bits of the first type, and
two bits of the second type, and so on, just as required by the
protograph.

In fact, any code defined by a base matrix of a form similar
to our B, for example of the form

B =











−1 a1 a2 a3 −1 −1 a4 a5 −1 −1 −1 a6
a7 −1 a8 a9 a10 −1 −1 a11 a12 −1 −1 −1
a13 a14 −1 a15 a16 a17 −1 −1 −1 a18 −1 −1
a19 a20 a21 −1 −1 a22 a23 −1 −1 −1 a24 −1
−1 −1 −1 −1 a25 a26 −1 −1 −1 a27 −1 −1
−1 −1 −1 −1 −1 a28 a29 −1 −1 −1 a30 −1
−1 −1 −1 −1 −1 −1 a31 a32 −1 −1 −1 a33
−1 −1 −1 −1 a34 −1 −1 a35 a36 −1 −1 −1











, (48)

where theai parameters are arbitrary, would also be a member
of the class defined by our protograph.

So the question might be raised, why not simply try to
find suitable parameters for a weight-I QC LDPC defined
by a base matrix like that in equation (48) directly, instead
of using the squashing procedure? This question will be
answered in more detail in Section IX, but the short answer
is that the squashing procedure is more practical because it
enforces useful additional structure in the base matrix, and thus
normally involves far fewer parameters for the hill-climbing
algorithm to optimize. When one tries to optimize over more
parameters, there is a greater chance that the hill-climbing
algorithms will get stuck in an unfortunate local optimum.

IX. N UMERICAL RESULTS

In this section we present a set of numerical results illus-
trating our design methodology and associated performance.
In Sec. IX-A we present performance results for three codes:
a pair of girth-10 codes (of rates0.45 and 1/3) and a rate-
0.7 girth-8 code. All are one-sided spatially-coupled codes.
For each design we compare its performance to that of
girth-6 code(s) that have the same protograph. In Sec. IX-
B we give a sense of the effectiveness of the hill-climbing
approach to girth maximization. We do this by considering a
pair of metrics of success: the minimum block length code
found of the desired girth and rate, and the “success rate”
of the algorithm. We compare these metrics for hill-climbing
to three other approaches: guess-and-test [33], progressive
edge growth (PEG) [31], and the code construction method
of O’Sullivan [27]. Then, in Sec. IX-C, we discuss the
computational motivations and demonstrate the computational
efficiency of the squashing procedure in comparison to other
possible approaches. Finally, in Sec. IX-D, we address how
the computational complexity of our approach scales with the
target girth as a function of the code rate.

A. Performance of girth-10 or girth-8 QC LDPC codes

In this section we present word-error-rate (WER) results
for two girth-10 and one girth-8 one-sided spatially-coupled
codes. We plot analogous results for girth-6 codes for compar-
ison. The first code is a rate-0.45 length-8000 QC LDPC code.
The protograph structure of the code is a lengthened version
of the one depicted in Fig. 8(a). As in that protograph, each
variable has degree three and check nodes have degree six,
four or two. The protograph of the code we present has 20
variable nodes and 11 check nodes (in contrast the protograph
in Fig. 8(a) has 10 variable and 6 check nodes). In other words
L[2] = 20 andJ[2] = 11. The incidence matrix of the code is

P1 =













1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2













.

Settingp[2] = 4 and using our design approach (girth maxi-
mization and squashing) we found a girth-10 QC LDPC code
with p[1] = 100. The code length isL[2] × p[2] × p[1] = 8000
and its base matrix,B1, is specified in App. F.

(a)

(b)

Fig. 8. Protographs for “one-sided” spatially-coupled codes as described in
[22]. The QC LDPC code constructed by a simple lifting of the protograph
in (a) will inevitably have eight-cycles because the check type at the right
end is connected by two edges to the bit types above and below it. The
QC LDPC code constructed by a simple lifting of the protograph in (b) will
inevitably have six-cycles because there exist bits types at the right end that
are connected by three edges to a check type.

The second code is a rate-1/3 length-24000 QC LDPC code.
The protograph structure of the second code is a shortened
version of the structure depicted in Fig. 8(b). As in that
protograph the variables are all of degree four. There are
six variable nodes and four check nodes, i.e.,L[2] = 6 and
J[2] = 4 (in contrast the protograph in Fig. 8(b) has 10 variable
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and 6 check nodes). The incidence matrix of the code is

P2 =









1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1
1 1 2 2 3 3









. (49)

Again we usep[2] = 4 and find a girth-10 QC LDPC code with
p[1] = 1000. This code’s length isL[2] × p[2] × p[1] = 24000.
The base matrix,B2, of this code is also specified in App. F.

The third code is a rate-0.7 length-28000 QC LDPC code.
The protograph structure of the third code is similar as the
one depicted in Fig. 8(b) but with four rows of variable nodes
instead of just two. As in that protograph the variables are all
of degree four. There are in total twenty variable nodes and
six check nodes, i.e.,L[2] = 20 and J[2] = 6. The incidence
matrix of the code is

P3 =





1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3



 .

Again we usep[2] = 4 and find a girth-8 QC LDPC code with
p[1] = 350. This code’s length isL[2] × p[2] × p[1] = 28000.
The base matrix,B3, of this code is also specified in App. F.

In Figs. 9, 10, and 11 we plot the respective error rate
performance of the three codes for the binary symmetric
channel (BSC). For purposes of comparison we plot analogous
results for some randomly generated girth-6 QC LDPC codes.
These codes have the same length, same rate, and same
non-zero positions in the base matrix (i.e., same protograph
structure) as the girth-10 and girth-8 codes to which they are
compared.
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Fig. 9. Word-error rate plots of the Gallager-B algorithm for the rate-0.45,
length-8000 girth-6 and girth-10 QC LDPC codes over the BSC.

In all cases, we plot the WER as a function of the signal-to-
noise ratio (SNR), using the Gallager-B decoding algorithm[2]
running for a maximum of200 iterations to guarantee the
convergence of decoding. Here, SNR is calculated byEb/N0,
whereEb is the energy per information bit andN0 is the noise
power spectral density. While there is a significant difference
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Fig. 10. Word-error rate plots of the Gallager-B algorithm for the rate-1/3,
length-24000 girth-6 and girth-10 QC LDPC codes over the BSC.
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Fig. 11. Word-error rate plots of the Gallager-B algorithm for the rate-0.7,
length-28000 girth-6 and girth-8 QC LDPC codes over the BSC.

between the error rates of a standard sum-product decoder and
Gallager-B, the performance trends of Gallager-B and sum-
product are typically quite similar. That said, computational
complexity is our main reason to plot results for Gallager-B
rather than sum-product. The error floor of Gallager-B occurs
at a higher WER and thus is easier to attain. In addition, the
Gallager-B algorithm runs very fast. This further helps in the
collection of useful statistics in the error floor regime.

In the plots the SNRs are calculated assuming that the
BSC results from hard-decision demodulation of a binary
phase-shift keying (BPSK)±1 sequence transmitted over an
additive white Gaussian noise (AWGN) channel. The resulting
relation between the crossover probabilityp of the equiv-
alent BSC-p and the SNR of the AWGN channel isp =

Q
(√

2R · 10SNR/10
)

, whereR is the rate of the code and

Q(·) is the Q-function.
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Figure 9 plots the results of the rate-0.45 length-8000 codes
and illustrates the general improvement to error floor behavior
provided by larger girth. At the highest SNR (around 7.8 dB)
the WER of the girth-10 code is about two orders of magnitude
larger than those of the girth-6 codes. Further, we note that
the three girth-6 codes plotted show variability in their error
rates. This illustrates the observation that the error flooris not
solely a function of girth, though higher girth certainly helps.

Figure 10 plots the results of the rate-1/3 length-24000
codes and illustrates some of the same points that were made
for the codes in Fig. 9, though somewhat more dramatically.
First, we note that at these lengths the error floor effect
for girth-6 codes is very abrupt, initiating just below9 dB.
Again, as also noted in Fig. 9, we see some variability in
the performance of the girth-6 codes. And again, higher girth
yields a marked improvement in the error floor. In fact, for
the girth-10 code we cannot see evidence of an error floor,
though it is possible that one would eventually be reached.
One difference between these codes and those in Fig. 9 is that
the Fig. 10 codes have a longer block-length, but we believe
that the more significant difference leading to the qualitative
difference in behavior is that the codes in Fig. 10 have a
constant variable degree of four rather than the variable degree
of three for the codes in Fig. 9.

Generally similar results are also observed for higher rate
codes, although as we describe below, the block lengths
required to achieve girth-10 codes are prohibitive, so we
restrict ourselves to comparing girth-6 and girth-8 codes.In
Fig. 11 we plot the results of a comparison of two rate-0.7
length-28000 codes with variable degree of four. The girth-8
version of the code was constructed using the hill-climbing
procedure in combination with the squashing procedure. For
this class of codes, not all girth-6 codes had an error floor
that we could easily reach with our simulations, and we have
selected one with a noticeable high error floor for clarity.

We think that it is interesting to note that no girth-8 code
among any spatially-coupled code with a constant variable
degree of four that we examined (we have simulated on the
order of 10 such codes) had a noticeable error floor to the
error levels we could reach in our software simulations. The
girth-8 code studied in Fig. 11 is one such example.

B. Effectiveness of the girth maximization algorithm

We now develop a sense of how much the hill-climbing girth
maximization algorithm presented in Sec. VII helps in finding
high girth codes. We present comparisons with Fossorier’s
“guess-and-test” algorithm [33], Hu et al.’s “progressiveedge
growth” (PEG) algorithm [31], and O’Sullivan’s code con-
struction method [27].

In [33] Fossorier uses guess-and-test to find high girth QC
LDPC codes. To understand this algorithm, consider a regular
weight-I QC LDPC code specified by aJ×L base matrix, and
a desired girth. Without loss of generality, all entries in the
first row and the first column of the base matrix can be fixed to
zero, while the remaining entries are chosen independentlyand
uniformly between0 andp− 1. The guess-and-test algorithm
then tests conditions, e.g. (9) for four-cycles, to verify that

no cycles shorter than the desired girth exist. Guess-and-test
can quickly generate each instance, i.e., a candidate code,and
check the girth conditions efficiently. But since the algorithm
randomly and independently samples the space of codes, and
no structure is exploited to find codes satisfying the desired
girth that are “close” to the random samples, the algorithm
runs into difficulty when the set of codes with the desired
parameters (length, rate, girth) is sparse in the overall set of
QC LDPC codes with the same length and rate parameters.
This is the regime where methods such as hill-climbing start
to dominate.

In [27], O’Sullivan proposed an algebraic method to gener-
ate large girth QC LDPC codes. We can compare directly to a
portion of his results, when he constructs regular weight-IQC
LDPC codes of girth-8 and girth-10. Both [33] and [27] pro-
vide a minimum size of circulant matrices (thep[1] parameter
in our notation), denoted aspmin, at which the algorithms of
those papers were able to find a regular weight-I QC LDPC
code of the target design parameters. In Tables I and II we
compare the bestpmin (which directly translates to block
length asL·pmin) we obtained using hill-climbing algorithm to
those obtained in [33] and [27]. We observe that while guess-
and-test and O’Sullivan’s method give roughly similar results,
hill-climbing results in a noticeably smaller (i.e., improved)
pmin for both girth-8 and girth-10 codes. We note that no
results are reported for girth-10 codes in [33].

L 4 5 6 7 8 9 10 11 12

[33], Table II 9 14 18 21 26 33 39 46 54
[27], Table III 9 13 18 22 27 34 40 49 55
Hill-climbing 9 13 18 21 25 30 35 41 47

TABLE I

M INIMUM CIRCULANT MATRIX DIMENSION , pmin, FOUND, TABULATED

AS A FUNCTION OFL FOR GIRTH-8 QC-LDPCCODES WITHJ = 3.

L 4 5 6 7 8 9 10 11 12

[27], Table IV 39 73 123 179 277 385 507 665 837
Hill-climbing 39 63 103 160 233 329 439 577 758

TABLE II

M INIMUM CIRCULANT MATRIX DIMENSION , pmin, FOUND, TABULATED

AS A FUNCTION OFL FOR GIRTH-10 QC-LDPCCODES WITHJ = 3.

Another well-known algorithm for maximizing girth is “pro-
gressive edge growth” (PEG). This algorithm was developed
in [31] to find high-girth, but random, LDPC codes. PEG
constructs the Tanner graph of the code sequentially, adding
the required number of edges to each variable node, node-
by-node. At each step the newly added edge connects the
current variable node to a newly neighboring check node.
The check is chosen so that, once all variable and check
nodes are already connected through some path, the resulting
cycle has maximum girth. Different (random) initializations
of the early steps leads to different final girths. In [32] the
approach is applied to weight-I QC LDPC codes. In effect, the
PEG algorithm is applied to the protograph of the QC code.
In comparison to the random sampling style of guess-and-
test, PEG explores the space of codes in a sequential manner
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which can be much more effective. As no results onpmin are
presented in [32], we could not include them in Tables I and II.
However, we did implement PEG so as to be able to compare
the frequency with which it finds a good code. We define this
“success rate” metric next.

From Table I we cannot draw the conclusion that, e.g.,
the hill-climbing algorithm is always more effective than
guess-and-test since either algorithm could get lucky and
find an unusually good base matrix. To make an informative
comparison, we define the “success rate” to be the fraction
of times that a run of either algorithm yields a base matrix
that has the desired girth for some target circulant matrix size
p[1]. Figure 12 depicts the success rate of guess-and-test, hill
climbing, and PEG in generating girth-8 weight-I regular QC
LDPC codes with base matrices of size3 × 12. We observe,
e.g., that for the guess-and-test to find a parity check matrix
with girth-8 at a circulant sizep[1] = 115 we need, on average,
to test106 random matrices. In contrast, hill climbing has near
certain success and PEG has a slightly lower success rate.
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Fig. 12. Comparison of the success rate of guess-and-test, hill climbing and
PEG in finding a weight-I girth-8 regular QC LDPC code when base matrix
has dimension3 × 12.

C. Effectiveness of the squashing procedure

We turn now to the computational motivations for the
squashing procedure. Recall that in Sec. VIII-D we raised the
following question. Why do we not simply try directly to find
suitable parameters for a weight-I QC LDPC code, rather than
constructing an HQC code and using the squashing procedure?
We now show that it is much harder to find a suitable code
using this “direct” method.

To show this we present results on the following experiment.
First we construct several protographs with structures similar
to Fig. 8(a) with the number of check nodes ranging from
three to nine. We setp[2] = 4 which means that the number
of rows in the corresponding base matrices ranges from 12
to 36. For each protograph, we construct girth-10 QC LDPC

codes withp[1] = 100 using the girth maximization algorithm
and the squashing procedure. We also try to construct girth-
10 weight-I QC LDPC codes with base matrices having the
same size and same non-zero positions as those obtained from
the squashing procedure using the direct method. The same
hill climbing algorithm is applied to this design problem as
is used in conjunction with the HQC LDPC approach. We
record the time (in seconds) it took to design ten codes for
each configuration. Figure 13 depicts the average time required
to construct one girth-10 QC LDPC code using each of these
two schemes.
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Fig. 13. Average time of constructing one girth-10 QC LDPC code with the
direct method and the squashing procedure.

For both schemes, the time required to find a girth-10 code
increases with the number of rows in the base matrix. When
the squashing procedure is used, we can find a suitable base
matrix in reasonable time even for large base matrices (large
number of rows). In contrast, when using the direct method,
we have to spend an extremely long time searching even for a
small base matrices. From this comparison, we conclude that
the squashing method is quite a bit more efficient.

D. Complexity scaling with code parameters

In this section, we discuss how complex it will be to
construct codes of certain rates using our algorithm. Here,
“complex” refers two things. One is the block length required
to be able to find a code of a certain girth and the other is
how much time it takes to find such a code. We emphasize that
both measures of complexity also depend on the protograph
specified.

We studied three families of protographs. The first corre-
sponds to regular(J, L) weight-I QC LDPC codes with a
J × L all-ones incidence matrix. Thep[1] min found by the
hill-climbing algorithm as a function ofL for girth-8 and
girth-10 has already been tabulated in Table I and Table II,
respectively. The second and third protograph families are
similar to those shown in Fig. 8(a) and (b), respectively, but
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where we increased the number of rows of variable nodes, so
that the number of types of variables increased from 10 to 15,
20, 25, and so on. (In both Fig. 8(a) and (b) there are two
rows of variable nodes.)

To illustrate the complexity scaling, we tabulatep[1] min

for the second and third families of codes in Table III and
Table IV. Because we are here mainly interested in illustrating
the general scaling, we did not try seriously to optimize
p[1] min for each set of parameters; for example in Table IV
we only tried to find thep[1] min value for larger values of
L[2] to the nearest multiple of 50. We observe thatp[1] min

grows much faster with the increase of code rate (the rate
will be 1 − J[2]/L[2]) for girth-10 codes than girth-8 codes.
For protographs similar to those shown in Fig. 8(a) and
(b), it is difficult to achieve girth-10 high-rate codes witha
reasonable code length (for example, Table III indicates that
a girth-10 code with rate 0.8 and protograph structure similar
to Fig. 8(a) would require a block-length of approximately
30 × 4 × 2000 = 240000), but it is still possible to obtain
girth-8 high-rate codes. We also see that for the same girth,
it is more difficult to construct codes with the protograph of
Fig. 8(b) than with the protograph of Fig. 8(a).

L[2] 10 15 20 25 30

girth-8 4 8 13 20 30
girth-10 60 180 400 900 2000

TABLE III

M INIMUM CIRCULANT MATRIX DIMENSION OF THE FIRST LEVEL , p[1] min,

FOUND, TABULATED AS A FUNCTION OF L[2] FOR GIRTH-8 AND GIRTH-10

CODES WITH PROTOGRAPH STRUCTURE SIMILAR TO THAT DEPICTED IN

FIG. 8(A) BUT WITH ADDITIONAL COPIES OF VARIABLE NODES(IN

FIG. 8(A) L[2] = 10). OTHER CODE PARAMETERS ARE KEPT THE SAME AS

IN THE FIGURE: J[2] = 6 AND p[2] = 4.

L[2] 10 15 20 25 30

girth-8 60 200 350 500 1000

TABLE IV

M INIMUM CIRCULANT MATRIX DIMENSION OF THE FIRST LEVEL , p[1] min,

FOUND, TABULATED AS A FUNCTION OF L[2] FOR GIRTH-8 CODES WITH

PROTOGRAPH STRUCTURE SIMILAR TO THAT DEPICTED INFIG. 8(B) BUT

WITH ADDITIONAL COPIES OF VARIABLE NODES IN FIG. 8(B) L[2] = 10).

OTHER CODE PARAMETERS ARE KEPT THE SAME AS IN THE FIGURE:

J[2] = 6 AND p[2] = 4.

Finally, we discuss how the time required to construct these
codes scales with the parameters. The total time to generate
a code with desired girth, denoted byTtotal, is decided by
many factors, among others, protograph structure, code rate
andp[1] min. For now we focus on the time scaling for a given
family of protographs. We consider how the execution time
to generate one instance (i.e., one iteration of our algorithm),
denoted byTe scales with the code rate. Since our algorithm
reduces cycles iteratively, if we need to generateNi instances
before finding the desired girth, thenTtotal = Te × Ni.
Here,Te is not sensitive top[1] min, i.e., asp[1] min changes,
Te is almost invariant. This is because the complexity of
calculating guilty values is independent ofp[1] min. While Te

is not sensitive top[1] min, Ni is closely related top[1] min. As
p[1] min increases,Ni decreases. For the three families of codes
discussed above, we found thatTe scales with the number
of potential cycles that must be ruled out in the protograph
structure. Thus, for the first family forJ fixed and target
girths of 6, 8, and 10, we observed scalings ofTe,g6 = O(L2),
Te,g8 = O(L3), andTe,g10 = O(L4), respectively. (We note
that the code rate is increasing inL for J fixed, so it takes
longer to find high-rate codes.) For the second and third
families for J[2] fixed, we similarly obtainTe,g6 = O(L2

[2]),
Te,g8 = O(L3

[2]), andTe,g10 = O(L4
[2]).

X. CONCLUSION

In this paper we present a methodology for designing high-
girth QC LDPC codes that match a given protograph structure.
In comparison to other approaches in which constructing a
code with maximum girth is the ultimate goal, in this paper we
have a combined goal: to maximize girth subject to an already-
specified protograph structure. Thus, our methodology can be
thought of as a second step in a design chain that starts with a
class of codes, such as spatially-coupled codes, that have good
theoretical waterfall performance, and outputs a code thathas
large girth. The point is that, due to the increased girth, the
resulting codes will also have good error-floor performance.
Our numerical results illustrate this outcome.

In developing our methodology, we introduce a new class of
hierarchical QC LDPC codes and explain how to determine
the girth of such codes. The hierarchical QC LDPC codes
can be represented using parity check matrices over multi-
variate polynomials, or in terms of a tree structure. We also
connect the hierarchical structure of HQC LDPC codes to
a particular sequence of graph coverings where the number
of coverings equals the number of layers in the code. Each
covering has a cyclic structure, which make possible the
very compact polynomial representation. We show that higher-
weight versions of hierarchical codes suffer from inevitable
cycles in analogous ways to non-hierarchical QC LDPC
codes, but that a straightforwardsquashingprocedure can
remove these cycles. We introduce a hill-climbing procedure
to eliminate the non-inevitable cycles from the code, and
subsequently remove the inevitable cycles by squashing. Thus
the main use of the hierarchical codes in this paper is to
reduce the number of free parameters in the codes in an effort
to make the girth maximization procedure computationally
tractable and fast, while knowing that the inevitable cycles
can be removed by squashing. In our numerical results we
illustrate the computational advantage of the hill-climbing
and squashing procedures in comparison with other standard
approaches.

We demonstrate our concepts and design procedure for
the case of one-sided spatially-coupled QC LDPC codes. We
present designs for three such codes, of different rates and
block lengths, two of girth-10 and a higher rate example of
girth-8. We compare the performance of each of these codes to
girth-6 codes with the same protograph structure and observe
a significant decrease in the error floor. We note that the codes
we designed that have variable nodes of degree four (e.g., the
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second and third examples of Fig. 10 and 11, respectively) do
not demonstrate any error floor tendencies down to a WER of
about10−7, i.e., the slope of the WER as a function of SNR
is still steepening. Computational effort limited us from simu-
lating lower WERs. But we note that the Gallager-B algorithm
we chose to simulate displays much higher error floors than
the standard sum-product or min-sum algorithms. (In fact, this
is why we choose to simulate this algorithm.) Given that the
class of one-sided spatially coupled codes has already been
theoretically shown to have excellent waterfall performance,
we believe the evidence presented strongly indicates that the
techniques introduced herein can produce practical codes with
very good performance in both the waterfall and error floor
regimes.

APPENDIX

A. Girth maximizing algorithms

In this appendix we present our girth maximizing algo-
rithms. As discussed in the text the objective of these algo-
rithms is to remove allnon-inevitablecycles from the quasi-
cyclic codes. We first present our algorithm for weight-1 QC
LDPC codes, and then for general heavier-weight or HQC
LDPC codes. We do this for simplicity of explanation as the
latter algorithm is a generalization of the former.

Algorithm 1: Weight-I QC LDPC code construction
(i) Set-up and code initialization: Specify the desired girth

g, matrix dimensionp, andT .
For each pair(j, l) such thatTj,l 6= ∗, pick a valuez

independently and uniformly from{0, . . . , p − 1}. Initialize
the code withcz[j, l] = 1 (andcz′ [j, l] = 0 for all z′ 6= z).

(ii) Calculate cost vector of current code:Use Subrou-
tine 1, described in Appendix C, to calculate the cost vectors
of the current code, i.e.,Γ = {Γj,l}. Then for each element
of Γ we calculate the change in edge label that most reduces
cost, and the resulting cost, respectively:

z̃j,l = arg min
z: 0≤z≤p−1

Γj,l(z),

Γ̃j,l = min
z: 0≤z≤p−1

Γj,l(z).

Recalling thats[j, l] is the value of the of the coefficient of
the current codecs[j, l], let

Γ−
j,l = Γj,l(s[j, l])

be the cost of the coefficient if it remains unchanged.
(iii) Identify best coefficient to change: Identify the

coefficient to change that would most greatly reduces the cost,
i.e.,

(jmax, lmax) = arg max
(j,l): 1≤j≤J, 1≤l≤L, Tj,l 6=∗

Γ−
j,l − Γ̃j,l,

where we break ties randomly. There are two possible out-
comes.

(a) If Γ−
jmax,lmax

− Γ̃jmax,lmax > 0, we update the code by
setting

cz̃jmax,lmax
[jmax, lmax] = 1,

and
cs[jmax, lmax] = 0.

We iterate by now returning to Step (ii).
(b) If Γ−

jmax,lmax
− Γ̃jmax,lmax = 0, the algorithm terminates.

(iii) Terminate algorithm: There are two possible termi-
nation conditions.

(a) If Γj,l(s[j, l]) = 0 for all (j, l) such thatTj,l 6= ∗, then we
have found a code that satisfies the desired parameters.

(b) Else if there is a(j, l) such thatΓj,l(s[j, l]) 6= 0 the
algorithm has converged to a local minimum.

We now present the generalized algorithm for heavier-
weight QC LDPC and HQC LDPC codes. In contrast to the
first algorithm, the treesTj,l ∈ T that define these codes have
more than one edge. Therefore, for each edge of each tree we
define a cost vector. We index the cost vectors both by their
level in the tree and by their position within each level, as
well as byj and l, thus

Γj,l,i,k = [γ0, γ1, · · · , γp[k]−1]

for 1 ≤ i ≤ |Tj,l[k]| and 1 ≤ k ≤ K where we recall that
|Tj,l[k]| is the number of edges at levelk in Tj,l.

Algorithm 2: Hierarchical QC LDPC code construction
(i) Set-up and code initialization:Specify the desired girth

g, matrix dimensionp, andT .
For each pair(j, l) such thatTj,l 6= ∗, randomly initialize

the values for each edge label (while obeying the requirement
that sibling edges must have distinct labels). Probably themost
straightforward way to do this is to work down the tree from
level K to the first level, picking the edge labels for each
set of sibling edges at levelk uniformly without replacement
from {0, . . . , p[k] − 1}. Given the initial edge labels, compute
all non-zero code coefficients, i.e., those associated witheach
leaf.

(ii) Calculate cost vector of current code:Use Subrou-
tine 2, described in Appendix D, to calculate the cost vectors
of the current code, i.e.,Γ = {Γj,l,i,k}. Then for each element
of Γ we calculate the change in edge label that most reduces
cost, and the resulting cost, respectively:

z̃j,l,i,k = argmin
z:0≤z≤p[k]−1

Γj,l,i,k(z),

Γ̃j,l,i,k = min
z:0≤z≤p[k]−1

Γj,l,i,k(z).

Recalling thatsk[j, l] is the value of the of thekth coordi-
nate of the current code coefficientcs[j, l], let

Γ−
j,l,i,k = Γj,l,i,k(sk[j, l])

be the cost if the coefficient value at thekth level remains
unchanged.

(iii) Identify best edge label to change:Identify the edge
label to change that would most greatly reduces the cost, i.e.,

(jmax, lmax, imax, kmax) = arg max
(j, l, i, k) : 1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K]

Tj,l 6= ∗, 1 ≤ i ≤ |Tj,l[k]|
1 ≤ k ≤ K

Γ−
j,l,i,k−Γ̃j,l,i,k,
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where we break ties randomly. There are two possible out-
comes.

(a) If Γ−
jmax,lmax,imax,kmax

− Γ̃jmax,lmax,imax,kmax > 0, we up-
date the code by setting the value of theimaxth edge at the
kmaxth level of Tjmax,lmax equal toz̃jmax,lmax,imax,kmax .
We iterate by now returning to Step (ii).

(b) If Γ−
jmax,lmax,imax,kmax

− Γ̃jmax,lmax,imax,kmax = 0, the
algorithm terminates.

(iv) Terminate algorithm: There are two possible termina-
tion conditions.

(a) If for all (j, l, i, k) we haveΓj,l,i,k(z) = 0 whenz is set
to equal the current label of theith edge at levelk in tree
Tj,l, then we have found a code that satisfies the desired
parameters.

(b) Else there is a(j, l, i, k) such thatΓj,l,i,k(z) 6= 0 and the
algorithm has converged to a local minimum.

B. The multiplicity of a path element

Recall from the discussion of Section VII-B that the de-
termination of guilty values becomes complicated when there
are repeated elements in a path. To aid in dealing with these
repeated elements, in this appendix, we define the “multiplic-
ity” of each path element. This definition is needed for for
the cost vector calculation subroutines of both QC and HQC
LDPC codes, described in Appendices C and D, respectively.

Definition 5: Given a pathP = {O,S}, any coefficient in
S is said to berepeatedr times if there arer elements of
P , indexed byi1, . . . , ir, for which (ji1 , li1) = (ji2 , li2) =
. . . = (jir

, lir
) and for whichs[ji1 , li1 ] = . . . = s[jir

, lir
].

The multiplicity κ of the element is computed as

κ =

r
∑

t=1

(−1)it . (50)

For path elements where|κ| > 1, i1 is termed thefirst
occurrenceof the element.
The multiplicity can be a positive integer, a negative integer,
or zero. When a path element has multiplicity zero the value
of the coefficient has no effect on whether (that particular)
path corresponds to a cycle.

C. Cost calculation subroutine for weight-I QC LDPC codes

In this appendix we present the subroutine for the calcula-
tion of the cost vectors of a weight-I QC LDPC code. In other
words, given a set of labeled trees we calculate the matrix
specified in (36).
Subroutine 1:

The subroutine takes as inputs the current tree structureT
(i.e., the set of labeled trees or, equivalently, the current parity
check matrixH), the desired girthg, and a vector of costsw.

(i) Define helper variables:Definex
(Λ)
j,l,z to be the number

of cycles of length-2Λ that would result if edge labels[j, l]
were set to equal valuez. In other words, the code was
modified to be one in whichcz[j, l] = 1 and cz′ [j, l] = 0

for all z′ 6= z. Initialize all x
(Λ)
j,l,z = 0.

(ii) Iterate through path lengths, paths, and path el-
ements: Consider in turn: (a) each path lengthΛ where
2 ≤ Λ ≤ g/2 − 1 andg is the desired girth; (b) each path of
lengthΛ, P ∈ PΛ whereP = {O,S} and |O| = |S| = 2Λ;
and (c) the first occurrence of each path element (indexed by
t, 1 ≤ t ≤ 2Λ) in P that has non-zero multiplicity.

(iii) Calculate guilty values and adjust helper variables:
Let s[jτ , lτ ] be the first occurrence of a path element of
multiplicity κ 6= 0. We want to compute the set of possible
values fors[jτ , lτ ] that would satisfy the condition for the
existence of a cycle. Recall from (30) that a cycle exists for
the current path values if

2Λ
∑

t=1

(−1)ts[jt, lt] modp = 0. (51)

To check if a valueβ ∈ {0, . . . , p−1} to whichs[jτ , lτ ] could
be changed would satisfy (51), we subtract the contributionof
the current value ofs[jτ , lτ ], add in the contribution of the
candidate valueβ, and see if the result is equal to zero. That
is, we check whether or not the relation

{

2Λ
∑

t=1

(−1)ts[jt, lt] − κs[jτ , lτ ] + κβ

}

modp = 0

holds. Equivalently, we ask is

κβ ≡ κs[jτ , lτ ] −
2Λ
∑

t=1

(−1)ts[jt, lt], (52)

where the congruence is modulo-p?
For each value ofβ, 0 ≤ β ≤ p − 1 satisfying (52) we

incrementx(Λ)
jτ ,lτ ,β as

x
(Λ)
jτ ,lτ ,β = x

(Λ)
jτ ,lτ ,β + 1.

Remarks:By only computing theβ for the first occurrence
of each path element, we avoid double-counting the contribu-
tion to cycles of elements with|κ| > 1. Allowing κ, defined
in (50), to take on either positive or negative values lets the
multiplicity of the element indicate its “aggregate polarity”,
i.e., whether it enters the sum (51) as a positive or a negative
contribution. Since the calculations ofβ in (52) are over a ring,
multiple values ofβ can satisfy the condition.2 However, at
most there are|κ| such values ofβ. This is because the set
of satisfying values ofβ forms a coset ofZp with respect
to the subgroup{β s.t. κβ ≡ 0}, the cardinality of which is
upper bounded byκ. Finally, we note that if|κ| = 1, a β
satisfying (52) exists and it is the unique suchβ.

(iv) Compute cost vectors: After considering all paths
lengthsΛ, 2 ≤ Λ ≤ g/2− 1, all P ∈ PΛ, and all elements of
each pathP , calculate the cost vectors element-by-element as

Γj,l(z) =

g/2−1
∑

Λ=2

x
(Λ)
j,l,z · wΛ.

2If, however, you restrictp to be prime, which we do not, then the
calculations would be over a field and there would be a unique solution β. We
do not choose to do this due to the greater limitation on the possible resulting
block lengths of the code.
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D. Cost calculation subroutine for HQC LDPC codes

We now present the subroutine used to calculate the cost
vectors of a general HQC LDPC code.

Subroutine 2:
The subroutine takes as inputs the current tree structureT

(i.e., set of labeled trees or, equivalently, the current parity
check matrixH), the desired girthg, and a vector of costsw.

(i) Define helper variables: Define x
(Λ)
j,l,i,z [k] to be the

number of cycles of length-2Λ that would result if theith edge
at levelk in Tj,l were set to equal valuez, 0 ≤ z ≤ p[k] − 1.

Remark:Modification of a single edge has in a hierarchical
code will, in general, change a number of code coefficients.
In particular, all coefficients associated with leaves thatare
descendents of that edge will change in theirkth coordinate.
These coefficients will change from ones in which

cs1,...,sk−1,sk,sk+1,...sK
[j, l] = 1 and

cs1,...,sk−1,z,sk+1,...sK
[j, l] = 0

to ones in which

cs1,...,sk−1,z,sk+1,...sK
[j, l] = 1 and

cs1,...,sk−1,sk,sk+1,...sK
[j, l] = 0.

Initialize all x
(Λ)
j,l,i,z [k] = 0.

(ii) Set infinite costs: For eachTj,l 6= ∗, each pair(j, l),
1 ≤ j ≤ J[K], 1 ≤ l ≤ L[K], each levelk, 1 ≤ k ≤ K, and
each level-k edge indexi, 1 ≤ i ≤ |Tj,l[k]|, let E be the set
of labels of sibling edges. For eachz ∈ E set

x
(Λ)
j,l,i,z [k] = ∞.

Remark: Recall from the algorithms described in Sec-
tion VII that our approach to code optimization is to identify
the change in the single edge label that most reduces a
weighted sum of cycle counts. In the special case of weight-
I QC LDPC codes there was a one-to-one mapping between
code coefficients and tree edges (since each tree has only a
single edge). In the generalized setting we are now considering
we seek to identify the change in a single edge of one of the
trees that will most reduce the cost. By setting certain costs to
infinity, certain changes in code structure will never be made.
The changes thus barred are those that would change the tree
topology. By setting those costs to infinity we ensure that the
unlabeled trees that describe our code remains an invariant
under our algorithm.

(iii) Iterate through path lengths, paths, and path
elements: Consider in turn: (a) each path lengthΛ where
2 ≤ Λ ≤ g/2 − 1; (b) each path of lengthΛ, P ∈ PΛ where
P = {O,S} and |O| = |S| = 2Λ; (c) the first occurrence of
each path element (indexed byt, 1 ≤ t ≤ 2Λ) in P that has
non-zero multiplicity.

(iv) Determine whether a particular path element can
have “guilty” vales: Let s[jτ , lτ ] be the first occurrence of
a path element of multiplicityκ 6= 0. Recall thatsk[jτ , lτ ]
corresponds to the label of an edge of treeTjτ ,lτ at levelk.
Now, for the coefficients[jτ , lτ ] under consideration, iterate

through each level of the code. For each levelk, 1 ≤ k ≤ K
compute

αk =

2Λ
∑

t=1

(−1)tsk[jt, lt] modp[k].

Unlessαk = 0 for all but onevalue ofk, there are no guilty
values. If there are no guilty values, proceed to the next path
element. If there is a single levelk′ such thatαk′ 6= 0 proceed
to step (v).

Remark:The reason for the all-but-one condition is that we
change at most one edge label per iteration. Therefore, unless
αk = 0 for all but one value ofk there is no single change in
an edge label that would result in a cycle in this iteration.

(v) Calculate guilty values and adjust helper variables:
Now consider coordinatek′ of the path elements[jτ , lτ ] whose
multiplicity κ 6= 0. The same logic as led to (52) can again
be used to identify the guilty values, now at levelk. That is,
compute the set of values ofβ, 0 ≤ β ≤ p[k] − 1 such that

κβ ≡ κsk[jτ , lτ ] −
2Λ
∑

t=1

(−1)tsk[jt, lt]. (53)

For each value ofβ, 0 ≤ β ≤ p[k] − 1 satisfying (53) we

incrementx(Λ)
jt,lt,i,β[k] as

x
(Λ)
jt,lt,i,β

[k] = x
(Λ)
jt,lt,i,β

[k] + 1.

wherei, 1 ≤ i ≤ |Tjt,lt [k]|, is the index of the level-k edge
in Tjt,lt whose label issk[jτ , lτ ].

Remarks:One of the added complications of the generalized
algorithm is that there is not a one-to-one mapping between the
code parameters that we are adjusting (the tree edge values)
and the code coefficients (each of which is associated with
one leaf of the tree). When an edge value is adjusted there
is a ripple effect, changing the coefficients associated with
all descendent leaves. However, each change in a edge label
effects only one of theK sums (29), all of which Theorem 2
requires to be equal to zero for a cycle to exist. Thus, although
there is a ripple effect on the code coefficient when adjusting
edge labels, the values of theΣ[k] at other levels is not
effected. Thus, considering the tree structure of the code nicely
decouples the question of girth and the search for high-girths
from the algebraic structure of the code.

E. Proof of Lemma 2

To prove part (i) of the lemma consider the ordered set of
coefficients (33) that describes the inevitable cycle. Notethat
the first and last coefficient must be in the same row of the
base matrix since the path defines a cycle. The second and
third and the fourth and fifth coefficients must also each be
in the same row. Since, when viewed at the first level of the
code, successive rows in a path must be distinct, three distinct
rows are traversed. In Fig. 14 we illustrate this logic for a
matrix corresponding to the polynomialhj,l(x, y) = xa1y0 +
xa3y2 +xa2y3, O = {(j, l), (j, l), (j, l), (j, l), (j, l), (j, l)},and
S = {[a1 0]T , [a2 3]T , [a3 2]T , [a1 0]T , [a2 3]T , [a3 2]T }
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a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

−1

−1

−1

−1

Fig. 14. Illustrative inevitable six-cycle that traversesthree rows and three
columns.

The logic of part (ii) is the same for rows and columns,
hence we provide the proof only for part the former. Con-
sider the ordered set of coefficients of (34). We assert that
again the path must traverse at least three rows of the base
matrix. As before the first and last coefficients must be in the
same row since this path defines an inevitable cycle. Each
other sequential pair of elements –([a2 A2]

T , [b1 B1]
T ),

([b2 B2]
T , [a2 A2]

T ), and([a1 A1]
T , [b2 B2]

T ) – must also lie
in the same rows. Consider the pair([b2 B2]

T , [a2 A2]
T ). The

row this pair lies in can either be distinct from the startingrow
or it can be the same. If this row is distinct from the starting
row then, since successive rows are distinct, the row in which
([a2 A2]

T , [b1 B1]
T ) lies must be distinct both from this row

and from the starting row and the lemma is proved for this
case. On the other hand, say([b2 B2]

T , [a2 A2]
T ) lies in the

starting row. We assert that in this case([a2 A2]
T , [b1 B1]

T )
and ([a1 A1]

T , [b2 B2]
T ) must lie in distinct rows and so

the total number of rows again is at least three. To see this
last assertion note first that the first[a1 A1]

T and the fifth
coefficient[a2 A2]

T are, by assumption, in the same row. Next
observe that the second and sixth coefficients are[a2 A2]

T and
[a1 A1]

T , respectively, both in distinct rows from the first. As
long asp[2] > 2 these latter two coefficients (the second and
sixth) must be in distinct rows of the base matrix. This follows
from the cyclic nature of the code. The only way a pair of
coefficients could appear in two distinct rows and two distinct
columns in swapped order would be ifp[2] = 2, but we have
assumed thatp[2] = 4.

The logic of the second case is illustrated in Fig. 15 for the
pair of polynomialshj,l1 = xa + xby3 andhj,l2 = xc + xdy.
The path illustrated corresponds to

O = {(j, l1), (j, l1), (j, l2), (j, l2), (j, l1), (j, l1), (j, l2), (j, l2)}

and

S =

{[

a1

0

]

,

[

a2

3

]

,

[

b1

0

]

,

[

b2

1

]

,

[

a2

3

]

,

[

a1

0

]

,

[

b2

1

]

,

[

b1

0

]}

.

F. Base matrices

In this appendix, the base matrices of the two girth-10 QC
LDPC codes and the rate 0.7 girth-8 QC LDPC code discussed
in Sec. IX are specified below. The base matrix of the first
code, B1 and the third code,B3 are written in transposed
format due to space.

a1

a1

a1

a1

a2

a2

a2

a2

b1

b1

b1

b1

b2

b2

b2

b2−1

−1

−1

−1

−1

−1

−1−1

−1

−1

−1

−1

−1

−1

−1−1

Fig. 15. Illustrative inevitable eight-cycle that traverses three rows.
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6
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6

6

6

6

6

6

6

4

−1 66 −1 −1 −1 99 −1 −1 −1 −1 73 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 66 −1 −1 −1 99 −1 −1 −1 −1 73 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 66 −1 −1 −1 99 73 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
66 −1 −1 −1 99 −1 −1 −1 −1 73 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 93 −1 46 −1 −1 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
93 −1 −1 −1 −1 −1 46 −1 −1 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 93 −1 −1 −1 −1 −1 46 −1 −1 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 93 −1 46 −1 −1 −1 −1 −1 −1 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 22 −1 −1 11 −1 −1 21 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 22 −1 −1 −1 −1 −1 −1 11 −1 −1 21 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 22 −1 −1 11 −1 −1 −1 −1 −1 −1 21 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 22 −1 −1 11 −1 −1 21 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 58 −1 −1 −1 21 −1 −1 25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 58 −1 −1 −1 21 −1 −1 25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 58 −1 −1 −1 21 −1 −1 −1 −1 −1 −1 25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 58 −1 −1 −1 21 −1 −1 25 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 62 −1 7 −1 −1 −1 −1 −1 8 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 62 −1 7 −1 −1 −1 −1 −1 8 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 62 −1 −1 −1 −1 −1 7 −1 8 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 62 −1 −1 −1 −1 −1 7 −1 8 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 60 −1 −1 −1 −1 24 −1 85 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 60 −1 −1 −1 −1 24 −1 85 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 60 24 −1 −1 −1 −1 −1 85 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 60 −1 −1 −1 −1 24 −1 −1 −1 −1 −1 85 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 75 −1 −1 −1 −1 19 −1 −1 −1 −1 40 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 75 −1 −1 −1 −1 19 40 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 75 19 −1 −1 −1 −1 40 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 75 −1 −1 −1 −1 19 −1 −1 −1 −1 40 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 37 −1 −1 −1 9 −1 −1 −1 100 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 37 −1 −1 −1 9 −1 −1 −1 100 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 37 −1 −1 −1 9 −1 −1 −1 100 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 37 −1 −1 −1 9 −1 −1 −1 100 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 62 −1 10 −1 −1 −1 −1 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 62 −1 10 −1 −1 −1 −1 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 62 −1 −1 −1 −1 −1 10 −1 −1 −1 −1 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 62 −1 −1 −1 −1 −1 10 79 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 27 −1 −1 −1 −1 4 −1 −1 −1 34 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
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−1 −1 252 −1 −1 997 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 252 −1 −1 997 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
252 −1 −1 −1 −1 −1 −1 997 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 252 −1 −1 997 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 873 −1 −1 −1 59 −1 −1 −1 145 −1 −1 192 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 873 −1 −1 −1 59 −1 −1 −1 145 −1 −1 192 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 873 −1 −1 −1 59 −1 −1 −1 145 −1 −1 192 −1 −1 −1 −1 −1 −1 −1 −1 −1
873 −1 −1 −1 59 −1 −1 −1 145 −1 −1 −1 −1 −1 −1 192 −1 −1 −1 −1 −1 −1 −1 −1
618 −1 −1 −1 −1 −1 −1 995 −1 772 −1 −1 634 −1 −1 −1 −1 758 −1 −1 −1 −1 −1 317
−1 618 −1 −1 995 −1 −1 −1 −1 −1 772 −1 −1 634 −1 −1 −1 −1 758 −1 317 −1 −1 −1
−1 −1 618 −1 −1 995 −1 −1 −1 −1 −1 772 −1 −1 634 −1 −1 −1 −1 758 −1 317 −1 −1
−1 −1 −1 618 −1 −1 995 −1 772 −1 −1 −1 −1 −1 −1 634 758 −1 −1 −1 −1 −1 317 −1
−1 −1 609 −1 −1 −1 −1 754 −1 80 272 −1 48 −1 398 −1 705 379 153 −1 494 116 −1 698
−1 −1 −1 609 754 −1 −1 −1 −1 −1 80 272 −1 48 −1 398 −1 705 379 153 698 494 116 −1
978 −1 −1 −1 −1 376 −1 −1 116 −1 −1 527 378 −1 18 −1 356 −1 206 402 −1 386 489 787
−1 978 −1 −1 −1 −1 376 −1 527 116 −1 −1 −1 378 −1 18 402 356 −1 206 787 −1 386 489
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4

−1 −1 294 −1 −1 −1 −1 205 55 −1 −1 −1 −1 82 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 294 205 −1 −1 −1 −1 55 −1 −1 −1 −1 82 −1 −1 −1 −1 −1 −1 −1 −1 −1
294 −1 −1 −1 −1 205 −1 −1 −1 −1 55 −1 −1 −1 −1 82 −1 −1 −1 −1 −1 −1 −1 −1
−1 294 −1 −1 −1 −1 205 −1 −1 −1 −1 55 82 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 55 −1 −1 −1 −1 100 −1 −1 119 −1 −1 −1 −1 288 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 55 −1 −1 −1 −1 100 −1 −1 119 −1 −1 −1 −1 288 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 55 100 −1 −1 −1 −1 −1 −1 119 288 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
55 −1 −1 −1 −1 100 −1 −1 119 −1 −1 −1 −1 288 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 206 −1 −1 −1 117 42 −1 −1 −1 −1 204 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
206 −1 −1 −1 117 −1 −1 −1 −1 42 −1 −1 −1 −1 204 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 206 −1 −1 −1 117 −1 −1 −1 −1 42 −1 −1 −1 −1 204 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 206 −1 −1 −1 117 −1 −1 −1 −1 42 204 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 319 −1 −1 −1 −1 −1 51 174 −1 −1 −1 −1 324 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 319 −1 51 −1 −1 −1 −1 174 −1 −1 −1 −1 324 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 319 −1 51 −1 −1 −1 −1 174 −1 −1 −1 −1 324 −1 −1 −1 −1 −1 −1 −1 −1
319 −1 −1 −1 −1 −1 51 −1 −1 −1 −1 174 324 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 132 −1 −1 −1 −1 315 −1 −1 291 −1 −1 −1 −1 154 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 132 −1 −1 −1 −1 315 −1 −1 291 −1 −1 −1 −1 154 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 132 315 −1 −1 −1 −1 −1 −1 291 154 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 132 −1 −1 −1 −1 315 −1 −1 291 −1 −1 −1 −1 154 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 266 −1 −1 −1 95 −1 −1 −1 0 −1 −1 −1 −1 227 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 266 −1 −1 −1 95 −1 −1 −1 0 227 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 266 −1 −1 −1 95 −1 −1 −1 0 −1 −1 −1 −1 227 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 266 −1 −1 −1 95 −1 −1 −1 0 −1 −1 −1 −1 227 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 89 −1 −1 −1 −1 317 −1 −1 −1 79 −1 −1 −1 213 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 89 −1 −1 −1 −1 317 −1 −1 −1 79 −1 −1 −1 213 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 89 317 −1 −1 −1 79 −1 −1 −1 213 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 89 −1 −1 −1 −1 317 −1 −1 −1 79 −1 −1 −1 213 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 80 −1 −1 −1 346 −1 95 −1 −1 −1 −1 −1 40 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 80 −1 −1 −1 346 −1 95 −1 −1 −1 −1 −1 40 −1 −1 −1 −1
−1 −1 −1 −1 80 −1 −1 −1 346 −1 −1 −1 −1 −1 95 −1 40 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 80 −1 −1 −1 346 −1 −1 −1 −1 −1 95 −1 40 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 315 −1 −1 −1 −1 −1 154 −1 −1 74 −1 −1 343 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 315 −1 154 −1 −1 −1 −1 −1 −1 74 −1 −1 77 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 315 −1 154 −1 −1 74 −1 −1 −1 −1 −1 −1 77
−1 −1 −1 −1 −1 −1 −1 −1 315 −1 −1 −1 −1 −1 154 −1 −1 74 −1 −1 343 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 13 −1 −1 −1 326 −1 −1 −1 −1 202 −1 −1 −1 132 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 13 −1 −1 −1 326 −1 −1 −1 −1 202 −1 −1 −1 132
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 13 −1 −1 −1 326 202 −1 −1 −1 62 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 13 −1 −1 −1 326 −1 −1 −1 −1 202 −1 −1 −1 62 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 343 −1 −1 −1 −1 −1 −1 83 −1 −1 −1 314 −1 −1 64 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 343 −1 −1 83 −1 −1 −1 314 −1 −1 −1 −1 −1 −1 64
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 343 −1 −1 83 −1 −1 −1 314 −1 −1 286 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 343 −1 −1 83 −1 −1 −1 314 −1 −1 286 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 267 −1 −1 −1 −1 288 −1 −1 344 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 267 −1 −1 −1 −1 288 −1 −1 344 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 267 −1 −1 −1 −1 288 −1 −1 325 −1
−1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 267 288 −1 −1 −1 −1 −1 −1 325
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 72 251 −1 −1 −1 245 −1 47 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 72 −1 −1 −1 −1 251 −1 −1 −1 245 −1 47
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 72 −1 −1 −1 −1 251 −1 96 −1 190 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 72 −1 −1 −1 −1 251 −1 96 −1 190
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 282 −1 42 −1 −1 −1 31 174 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 282 −1 −1 −1 −1 −1 42 −1 −1 −1 254 174
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 282 −1 −1 −1 −1 −1 42 200 −1 −1 254
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 282 −1 42 −1 −1 −1 31 200 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 257 −1 293 −1 −1 −1 285 330 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 257 −1 −1 −1 −1 −1 293 −1 −1 −1 154 330
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 257 −1 −1 −1 −1 −1 293 214 −1 −1 154
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 257 −1 293 −1 −1 −1 285 214 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 316 −1 −1 −1 105 −1 −1 172
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 316 −1 −1 77 105 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 316 −1 −1 77 211 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 316 −1 −1 172 211
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 170 −1 −1 116 171 172 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 170 −1 −1 116 85 172
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 170 134 −1 128 85
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 170 −1 −1 −1 171 134 −1 128
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 84 67 176 102 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 84 −1 −1 −1 −1 67 268 102
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 84 −1 −1 310 −1 186 268
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 84 −1 176 310 −1 186
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 326 303 −1 307 46
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 326 −1 −1 −1 23 303 −1 307
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 326 −1 −1 57 23 125 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 326 −1 −1 57 46 125
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 52 −1 40 283 304
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 52 −1 −1 −1 263 −1 144 283
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 52 −1 −1 76 263 −1 144
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 52 −1 40 76 304 −1
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