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Abstract—This paper proposes a new coding scheme which
jointly applies perceptual quality metrics to prediction, quanti-
zation and rate-distortion optimization (RDO) within the High
Efficiency Video Coding (HEVC) framework. A new prediction
approach which uses template matching is introduced. The
template matching uses a structural similarity metric (SSIM)
and a Just-Noticeable Distortion (JND) model. The matched
candidates are linearly filtered to generate a prediction. We also
modify the JND model and use Supra-threshold Distortion (StD)
as the distortion measurement in RDO. Experimental results
showing improvements for coding textured areas are presented
as well.

I. INTRODUCTION

Image and video coding is one of the most critical tech-
niques in modern multimedia signal processing. The state-
of-the-art image codecs such as JPEG 2000 and JPEG XR,
and video codecs such as H.264/AVC and the imminent High
Efficiency Video Coding (HEVC) [1] standard can compress
image or video at considerably low bit rates with good quality.
However, the quality and mode-dependent decisions inside the
codecs are typically measured using mean-square error, which
is related to PSNR, or mean-absolute error, which are well
known metrics that do not necessarily related to the ultimate
signal receiver, i.e. human vision system (HVS). The success-
ful use of perceptual coding for audio signal compression, e.g.
MP3, proved that by exploiting the characteristics of human
perceptual system, redundant information can be discarded
without noticeable distortion, and thus the bit-rate of the
coded signal can be significantly reduced. Although spatial or
frequency component correlations are widely considered with
techniques such as motion compensation, template matching,
and adaptive prediction, perceptually optimized coders are less
studied. Additionally, the distortion that could not be perceived
by the HVS is usually not measured objectively [2].

To study HVS, many researchers conduct subjective tests
using simple excitation such as uniform luminance blocks,
sinusoid gratings and Gabor patches to determine the detection
threshold of distortion or of the signal. These experimental
results are related to Just-Noticeable-Distortion (JND) and
they are modeled mathematically in order to be used in the
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image/video codecs. Theoretically as long as the distortion or
signal level is below JND, it should not be perceived by the
HVS (perceptually lossless). In an image/video coding context,
ideally the coder would only allocate bits for signaling portions
of the image for which the distortion that greater than or
equal to JND or the corresponding Supra-threshold Distortion
(StD) [2].

A. Human Vision System and Just Noticeable Distortion

HVS is a very complex system for which much is left to be
understood. At the lower level, HVS is known to perform a
sub-band decomposition. Also HVS does not consider differ-
ent visual information, e.g. intensity and frequency, as having
the same importance [3].

Psychophysics studies shows four aspects affect the de-
tection threshold of distortion (or signal) in HVS. They are
luminance adaptation, contrast sensitivity, contrast masking
and temporal masking [2], [4].

Luminance adaptation indicates the nonlinear relation-
ship between perceived luminance and true luminance dis-
played [2]. Luminance adaptation is also called luminance
masking since the luminance of the signal masks the distortion.
The luminance adaptation is usually tested by showing a patch
of uniform luminance as the excitation against the background
which has different luminance. The detection sensitivity is
modeled by the Weber-Fechner Law [5] such that when the
excitation is just noticeable, the luminance difference between
the patch and background divided by luminance of background
is a constant. In other words, the brighter the background is,
the higher the detection threshold will be, meaning that the
sensitivity to distortion is lower. However, due to the ambient
illumination of display devices [6], the masking in very dark
regions would be stronger than that in very bright regions.

Contrast sensitivity refers to the reciprocal of the contrast
detecting threshold, which is the lowest contrast at which
the viewer can just barely detect the difference between the
single frequency component (a sinusoidal grating) and the
uniform luminance background. Contrast here means the peak-
to-peak amplitude of sinusoidal grating [3]. The sensitivity
varies in depending upon the background luminance. As early
as 1967, a experiment led by van Nes and Bouman [7]



showed sinusoids of light for different wavelengths (Red,
Green and Blue) and different luminance levels to human
viewers. They found that when the background luminance
is low (< 300 Td) the detection threshold obeys de Vries-
Rose law with respect to frequency, in which the threshold
increases in proportion to the reciprocal of the square root
of the luminance. When the background luminance is high
(> 300 Td) then the detection threshold follows the Weber-
Fechner law. The contrast sensitivity function has important
impact on later research of perceptual image/video coding.

Contrast masking is the effect of reducing the perceiv-
ability of the distortion (or signal) by the presence of a
masking signal. For example, many coding artifacts in the
complex regions such as tree leaves and sand are less vis-
ible than those in the uniform regions such as the sky. In
this case the high spatial-frequency components in complex
regions mask the high spatial-frequency components in the
artifacts. The masker usually has a similar spatial location and
spatial-frequency components as the distortion (or signal) [2].
Therefore, contrast masking is sometimes been called texture
masking [4], [6]. Contrast masking was studied Legge and
Foley [8], who experimented with sinusoidal gratings having
different frequencies and grate widths. The results show that
the detection threshold for the high contrast masker follows a
power law, and the low contrast masker reduces the detection
threshold. By quantitatively measuring the detection threshold
for different background luminance of varieties of subjects,
the threshold modulation curves, namely the adjusted contrast
sensitivity function (CSF) is plotted.

Temporal masking in video coding refers to the reduction
in the perception of distortion (or signal) in the presence of
high temporal frequencies. When the motion is fast, details
in individual video frames become more difficult to detect. In
addition to depending upon the temporal frequency, temporal
masking also depends upon a function of spatial frequency [9].
The sensitivity is modeled as a band-pass filter at low spatial
frequencies and a low-pass filter at high spatial frequen-
cies [10].

Beside the four aspects mentioned above, some studies also
involve a foveation model [11], [12], especially for video
coding. Because of the nature of HVS [3], the resolution is
extremely high at the fixation point in the region of interest.
Thus, foveation can be modeled as a low pass filter around
the fixation point in the region of interest. The region away
from fixation points can be coded using lower rates.

Since the just noticeable distortion (JND) is a nonlinear
function of HVS characteristics, a pooling strategy for JND
using above factors can be multiplication [13], maximum [6]
or summation [14].

Once the encoder has the JND model for the image or
for the local blocks of image, an uniform quantizer with a
step size twice the JND value is usually used to quantize the
image itself, the transformed image, or a prediction residue
depending on the coding scheme and JND model. More details
will be discussed in Section III.

B. Perceptual Quality Metrics

Besides JND, another important technique that can improve
perceptual image/video coding is the quality metric which
approximates subjective characteristics of a viewer. Instead of
considering quality only from the Signal-to-Noise Ratio (SNR)
point of view, many pioneering metrics based on the nature of
HVS has been proposed in the past two decades. An up-to-date
survey has been done by Lin and Kuo [4] where the perceptual
quality metric is classified into model based and signal driven.
The model-based perceptual quality metrics use the idea of
filter banks similar to HVS such as the Cortex Transform,
Gabor filters, and steerable filters to decompose the image
into sub-bands and analyze the perceptual characteristics to
quantitatively determine the quality. A good example of a
model-based metric is the visible difference predictor (VDP)
in [15]. Since model-based metrics are computationally expen-
sive, signal-driven metrics, which do not try to build a HVS
model, are preferred. Signal-driven metrics extract only the
characteristics or statistics of a signal for evaluation purposes.

Within the category of signal-driven metrics, structural
approaches show great success in image processing. The
quality should be measured in the sense of structural similarity
between the original image and the coded version. A good
coder can reconstruct totally different images or image blocks
in the MSE sense, without effecting the viewing quality [16].
The pitfall of MSE or PSNR is that images are strongly locally
correlated 2D signals which do not convey information at only
the single pixel level. In fact the information containers are
shapes, patterns, colors, edges and so forth. A good metric
should maximize similarities and be invariant to translation,
scaling and rotation. Moreover, the metric should also invariant
to light intensity and chroma changes. A well-known structural
similarity metric (called SSIM) was first introduced for the
spatial domain and later applied to sub-bands in [17]. The
SSIM metric is defined as:

SSIM(x,y) ,
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (1)

The original image x (or block) and the reconstructed image
y (or block) are decomposed into S levels and L orientations
using steerable filters [18]. As a result, there will be S × L
sub-bands. The local mean, variance of corresponding sub-
bands, and the covariance between x and y in each sub-band
are computed using a small sliding window. For each sub-
band, the local SSIM score is computed using (1). The overall
SSIM score is a floating-point number between 0 and 1, which
is the arithmetic average of all scores over all sub-bands.
A more complex and accurate metric called structure texture
similarity (STSIM) [19] improved upon SSIM by introducing
statistics between sub-bands with different orientations and
scale. STSIM also discards the σxy term from SSIM. In this
paper, we use SSIM for simplicity.

C. Proposed Method

The typical flow for compressing pictures in state-of-the-
art video coders such as HEVC [1] and H.264/AVC [20]
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Fig. 2. Proposed Encoder.

is prediction, transform, quantization and entropy coding,
controlled via rate-distortion optimization (RDO) as shown in
Fig. 1. The approach proposed in this paper, as shown in Fig. 2,
exploits a local SSIM and JND-based model in the predictor,
quantizer, and during RDO.

H.264/AVC and HEVC iteratively use RDO to find the
optimal prediction and quantization schemes. Existing percep-
tual based image coding methods either focus on adjusting
the quantization matrix based on JND metrics or on using
perceptual-based metrics to perform RDO. However, to our
knowledge, there is not a method that applies perceptual based
metrics to find a perceptually-optimal prediction jointly with
a perceptually adjusted quantizer.

D. Organization

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of related work on perceptual coding.
Section III proposes a modification to an existing quantization
method based on a JND model. A proposed perceptual predic-
tion scheme is described in detail in Section IV. Experimental
results are shown in Section V. Conclusions are given in VI.

II. RELATED WORK

Many researchers have studied the perceptual distortion
visibility model or equivalent CSF model since the 1960s.
Data for JND models come from psychophysical experiments.
Using these models, researchers proposed variants of coding
algorithms. In general the models are classified into spatial
domain models which use local pixel values to determine the
detection threshold of distortion, and sub-band domain models
which usually adjust the CSF to find the distortion tolerance
in different sub-bands.

A. Sub-Band Domain JND Model and Perceptual Coding

Safranek and Johnston [21] introduced a contrast masking
model in a generalized quadrature mirror filter (GQMF) sub-
band domain given a uniform background gray level of 127.
The baseline sub-band sensitivity and sensitivity adjustment
for different luminance values are measured subjectively and
tabulated. The texture masking is computed by the texture
energy of each of the sub-bands. The overall sensitivity is

the product of the baseline sensitivity, luminance adjustment
and texture masking. Each sub-band is then DPCM-coded and
quantized using the overall sensitivity as the quantization steps.

Peterson et al. [22] performed a subjective experiment on
sensitivity for different colors (RGB) with 8x8 DCT basis
functions. They found that the DC sensitivity plot has a ’U-
shape’ vs. the background luminance, and the AC sensitivity
logarithmically increases with respect to the basis function
magnitude. Based on the experiments, Peterson et al. generated
a quantization matrix that could be used in a visually lossless
coding scheme.

Based on van Nes and Bouman’s results [7], Ahumada
and Peterson [23] applied a parabolic fitting of 1D contrast
sensitivity experimental results, and build a 2D CSF by
orthogonally combining two 1D CSFs with consideration of
the correlation between different dimensions. The CSF is a
function of luminance which can be estimated from the image.
A parabolic model was used to compute the CSF in DCT sub-
bands and was applied to the quantization matrix.

Foley and Boynton [24] introduced a new contrast masking
model for HVS. They found the response of HVS depends
not only on the excitation of the receptive field, but also on
inhibitory inputs. The relationship is modeled as excitation
divided by inhibition called target threshold vs. masker con-
trast function (TvC). They use sinusoidal gratings, like [22],
and Gabor patterns for different orientations, phases and
frequencies of the signal. Both the target and masker are
the linear sum of signals. Also, both target and masker are
orientation-dependent functions.

A famous perceptual coder called DCTune [25] uses lu-
minance adaptation [23] and contrast masking [8] to adjust
the quantization matrix in DCT sub-bands. The distortion was
measured as in [24]. He also introduced error pooling of
JND via the Minkowski metric. Later, Watson [26] performed
a series of subjective experiments to test the sensitivity of
discrete wavelet transform (DWT) components. The results
were fitted to the exponential model.

Visible Difference Predictor (VDP) [15] is an image quality
metric considering luminance adaptation, contrast sensitivity
and contrast masking. VDP assumes the luminance adaptation
occurs locally around a fixation area. A 2D CSF model in the
frequency domain is proposed. A Cortex Transform is used to
decompose the image.

Hontsch and Karam [27] modified the JND model in [21]
for a 16 sub-band GQMF decomposition. The model considers
the luminance adaptation and Inter/Intra masking. The base
luminance sensitivity is measured numerically without a closed
form. Compared to the coding scheme in [21], the JND mea-
surement is adapted locally without the need for transmitting
side information. Later in [13], the authors also tried to use
JND modeled by a product of luminance-adjusted CSF as
in [23] and Contrast Masking Adjustment [24] in DCT sub-
bands. The local luminance computation involves only data in
the foveation region. A new quality metric is also proposed
which is based upon the perceptual error-detecting probability.
However, the work in [13] does not accurately model for



luminance adaptation in the dark and bright regions, as well
as where HVS has lower visibility threshold at/around edges.
Zhang et al. [28] improved upon [13] by expressing the JND
as the product of the base threshold and elevation factor for
each DCT sub-band.

Liu et al. [29] extended the work of [13] to JPEG 2000
encoding by incorporating JND into DWT sub-bands. The
model is the product of contrast sensitivity as in [26], lumi-
nance adaptation [25] and contrast masking adjustment. The
contrast masking consists of a self-contrast adjustment [13]
and neighborhood contrast adjustment [30].

Leung and Taubman [31] assumed that movement in the
scene can be tracked easily by the eye such that compressed
artifacts are most noticeable at that moment. Thus, the authors
use an adaptive masking slope to model the Supra-threshold
Distortion (StD) in DWT sub-bands. The visual sensitivity is
same as in [32].

A DCT-domain JND model for video coding is introduced
by [9], which considers contrast sensitivity [23], a newer
luminance adaptation model, and texture contrast masking.
These aspects are assisted using edge detection and temporal
contrast sensitivity, along with temporal frequency associated
with eye movement [15].

Jia et al. [33] introduced a spatio-temporal JND model
which considers the eye movement for video in the DCT sub-
bands. This paper extends [28] to video. The model incor-
porates spatio-temporal CSF [23], eye movement, luminance
adaptation and contrast [28].

Naccari and Pereira [34] used a JND model of a color
video signal in the DCT domain. The model is an extension of
their earlier work [35], assuming the same masking in chroma
and luma, along with temporal masking [9]. In this work,
the H.264/AVC quantization matrix is used as the baseline
detection threshold, which is then adjusted depending on the
average energy of DCT sub-bands.

In [32], a wavelet domain JND method is introduced. The
author proposes a method to reduce the prediction error in
DWT + DPCM compression for color images with respect
to JND in DWT sub-bands. This approach uses JND-based
quantization and to estimate JND in the decoder locally. The
JND is modeled by luminance adaption [25], [26] and masking
adjustments.

B. Spatial Domain JND Model and Perceptual Coding

In [6], the authors proposed a new spatial domain JND
model as the maximum of spatial masking and luminance
adaption. The authors also introduce the minimally noticeable
distortion (MND) as a relaxation of JND, which can be used
to control the rate-distortion optimizer.

Foveation Scalable Video Coding (FSVC) [11] is introduced
by Wang et al. The critical frequency beyond which no
frequency component is perceivable is used to threshold the
foveation sensitivity function. Both spatial and DWT domain
foveation sensitivity model are built to adapt prediction and
scale the bit rate, by shrinking DWT coefficients, respectively.

The work in [14] focuses on motion compensation residues.
Additionally, this model is suitable for Intra-frame prediction.
It is based on a summation rule, as JND is linear combination
of different effects. The authors introduced a spatial domain
JND model called non-linear additively model for masking
(NAMM) using luminance masking plus texture masking mi-
nus cross-effect. The luminance masking is the same as [12],
which was initially defined in [6]. The texture masking only
considers edge information via a product of gradient and edge
intensity.

A motion perception uncertainty measurement is proposed
in [36]. The motion self-information is measured by using
an approximate power law model. The background likelihood
measures the uncertainty of the scene. The importance map is
weighted by the difference of self-information and background
likelihood.

The authors of [12] proposed a Foveated-JND model as
a function of spatial JND, temporal JND and foveated JND,
for video coding in the spatial domain. The spatial JND and
temporal JND are based on [6]. If multiple foveation points
exist, the total JND is the minimum overall.

Gao et al. [37] based their JND model on [14]. Depth Image
Based Rendering (DIBR) is used to synthesize JND maps for
Multiview Video Coding (MVC). The 2D JND map is then
projected onto 3D world coordinates with help of a depth
map. The 3D JND map is then back-projected to other camera
views. The residue of 4x4 block is thresholded by synthesized
JND maps.

C. Perceptual Based Rate-Distortion Optimization

In HEVC [1] and H.264/AVC [20], the encoder uses rate-
distortion optimization (RDO) to output the best picture qual-
ity with a rate less than a given constraint. This process can
be expressed as

min {D} subject to R ≤ Rc, (2)

where D is the distortion measurement, usually based on MSE.
In order to incorporate a perceptual quality measurement,
[38] uses D = 1 − SSIM in H.264/AVC, where SSIM is
the structural similarity metric introduced by [17], as in (1).
This algorithm produces a better perceptual quality than
H.264/AVC.

D. Perceptual Based Template Matching

Template-matching techniques generally use MSE or Mean
Absolute Error as a matching criteria [39]. Recent research
involves sparse reconstruction as the constraint to solve the
matching problem [40]. Lan et al. [41] use template matching
to find candidates in the reconstructed image, and they then use
the candidates to train a KLT matrix adaptively for transform
coding. A structural texture similarity metric (STSIM) [19]
is combined with MSE as the structurally-lossless template
matching criteria in [16].



III. PERCEPTUAL QUANTIZATION

In this paper, we propose a new perceptual template match-
ing metric using SSIM and JND models. We therefore need
to choose a JND model. Because HEVC quantizes prediction
residues in the transform domain, the model from Ahumdada
and Peterson [23] is feasible for this purpose, with some
proposed modifications.

Given an N×N block in the original image as the coding
target, HEVC uses non-uniform scalar quantization to quantize
the DCT coefficient residue εm,n = Xm,n − X̂m,n, where
m,n = 0, 1, 2, ..., N−1 are indexes of DCT sub-bands, Xm,n

are the DCT coefficients of target block x at sub-band or
coefficient location (m,n), and X̂m,n are the DCT coefficients
of the prediction of target block at sub-band (m,n). Similar
to other Intra-frame coding algorithms, it is well known [25]
(DCTune) that the DC coefficient and low frequency AC
coefficients should be quantized finer than the high frequency
coefficients in order to achieve the best perceptual rate-
distortion performance.

For scalar quantization, since the maximum quantization
error for a given quantization step is equal to the half of the
quantization step size [13], and because JND theoretically is
the least distortion that the HVS could perceive, the quanti-
zation step size for sub-band (m,n) should be twice the JND
Tm,n, as follows:

Qm,n = 2Tm,n. (3)

Here, we use the JND model in DCT sub-bands TDCT ,
which is computed by the product of the contrast sensitivity
function adjusted by luminance and scaled by DCT coeffi-
cients, and a contrast masking adjustment aCM [13]:

Tm,n = TDCT (m,n)× aCM (m,n). (4)

The CSF is an exponential function depending on the back-
ground luminance and sub-band frequency [23], excluding the
DC sensitivity for which both m and n are equal to zero:

log10 TCSF (m,n) = log10

(
Tmin

r + (1− r) cos2 θm,n

)
+K(log10 fm,n − log10 fmin)

2.

(5)

The scaled version of CSF which will be used in (4) is [23]

TDCT =
MTCSF (m,n)

2αiαj(Lmax − Lmin)
, (6)

where M is the number of gray levels (e.g 256), and Lmax
and Lmin are the maximum and minimum display luminance.
Given a block with N transform coefficients, αi or αj are
DCT normalization factors:

αi =
1√
N

{
1, i = 0√
2, i 6= 0

θm,n = arcsin
2fi,0f0,j
f2i,j

(7)

fi,j =
1

2N

√(
i

ωx

)2

+

(
j

ωy

)2

. (8)

Here, ωx and ωy are the horizontal width and vertical height
of a single pixel in degrees of visual angle [42],

wx = (360/π)× arctan (Wscreen/2DvWresolution)

wy = (360/π)× arctan (Hscreen/2DvHresolution)

where Dv is the viewing distance from the center of screen.
The expression in (5) is a mathematical approximation

of data in [7] using a parabola. Here, fmin is the spatial-
frequency where the detection threshold is the smallest, i.e.
where the sensitivity is the highest. The detection threshold
at fmin is Tmin and the bandwidth of the CSF is deter-
mined by K. With L being the local background luminance
L = Lmin + (Lmax − Lmin)/M , we get

fmin =

{
f0L

αfL
−αf

f , L ≤ Lf
f0, L > Lf

Tmin =

{
LαTL1−αT

T /S0, L ≤ LT
L/S0, L > LT

K =

{
f0L

αKL1−αK

K , L ≤ LK
K0, L > LK .

The constants Ahumdada and Peterson [23] used in this model
are the result of least square fitting of experiment results
in [7]: αT=0.649, αf=0.182, αK=0.0706, LT=13.45 cd/m2,
Lf=LK=300 cd/m2, S0=94.7, f0=6.78 cyc/deg and
K0=3.125.

However, there are two problems with this CSF model. First,
for the DC coefficient, the CSF is undefined, since when both
m,n equal zero, θm,n in (7) approaches infinity. Second, in
the low frequency sub-bands fm,n is quite small as compared
to fmin, such that the second term in (5) is extremely large.
As a result, the model tends to over-estimate the detection
threshold in low frequency sub-bands. In order to deal with
the first issue, a local luminance adaptation model is used
to estimate the detection threshold in DC sub-band. Either [9]
or [6] can be used here to model the DC threshold. We use the
latter model with local mean µx for better quality in HEVC.

TCSF (0, 0) =

{
17(1−

√
µx/127 + 3), if µx ≤ 127

3(µx − 127)/128 + 3, if µx > 127
(9)

To address the second problem, we clip the minimum value
of the spatial frequency to 1 to prevent fmin/fm,n from
becoming too large.

The contrast masking adjustment is defined as [13],

aCM (m,n) =

max

(
1,

∣∣∣∣ E(|X|)
TDCT (m,n)

∣∣∣∣ε) , m 6= 0, n 6= 0

1, otherwise,
(10)

where E(|X|) is the average magnitude of local DCT coeffi-
cients and ε=0.6. The contrast masking adjustment uses the
excitation/inhibition model of [24], which indicates how much
more distortion can be tolerated with the presence of signal
(X) in the spatial-frequency domain.



IV. PERCEPTUALLY-BASED INTRA PREDICTION

Given a block of the original image to be coded as the
target, HEVC [1] uses previously-decoded pixel values in the
reconstructed image as part of the prediction process. The
reconstructed pixels immediately above and to the left of the
target, if available, are used as the input of the predictor.
There are 33 prediction directions ranging from approximately
−135◦ to 45◦. Two extra modes, DC mode and Planar mode
are used to generate flat or bilinear interpolated predictions.
Rate-Distortion Optimization (RDO) in HEVC is used to
determine the best prediction mode and the best quadtree
structure of a block.

HEVC Intra prediction, as well as with many other image
coders such as H.264/AVC Intra prediction, consider the
spatial correlation in the local 2D signal. As a result, a “good”
prediction that minimizes the rate-distortion cost is expected.
The faithfulness of the prediction is measured in the mean
square error (MSE) sense such that the best prediction will
give least MSE with respect to the target. In some cases,
metrics with lower complexity than MSE are used to choose a
subset of Intra prediction modes. However, in Section I-B we
described that MSE or similar absolute error metrics do not
always faithfully represent the perceptual quality of an image.
To obtain a predictor that is more consistent with the HVS-
related aspects of images, a perceptual quality metric can be
used while selecting coding modes. Moreover, authors of [16]
showed that one can find many structurally lossless candidates
to replace the target in the reconstructed image, rather than
relying on only the neighboring pixels adjacent to the target.
In this paper, we propose new a Intra prediction scheme which
uses function of JND and SSIM as the quality metric and tries
to find a prediction from the structurally lossless candidates.

As shown in Fig. 3, the proposed predictor use the neigh-
boring previously-decoded blocks above and to the left of the
target block as the template. The template is matched using a
perceptual quality metric to find up to K candidates having the
best quality. A filter is used to combine the best candidates to
generate a prediction of the target. There is some flexibility in
how this is accomplished. First, the number of best candidates
K can vary depending on the filter and the quality metric.
For example, the predictor would only need one candidate
without filtering or K=16 candidates with a median filter.
Second, this scheme can be used as an extra mode in HEVC
in addition to the existing 35 modes, or this scheme can be the
only mode that HEVC uses, to reduce the bits needed to signal
the mode index. Third, since HEVC uses a quad-tree structure
to recursively code a target block, a cost function is used to
determine the structure of quad-tree. This cost function will be
described later in Section IV-D. In HEVC, the cost function is
MSE or similar. In our coding scheme, we will use perceptual
quality metrics.

The detailed prediction algorithm is shown in Fig. 4. A
target block x has both left b1 and upper b2 neighboring blocks
having the same block size as the target. For each candidate
in the search region, which is generally 3 to 5 times the block

Template Matching Filtering 
Input target Prediction 

JND Model 

x 

Candidates 

z 

Fig. 3. Prediction Model
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Fig. 4. Template Matching

size, a quality associated with the candidate is estimated as

D =
DQ(b1, b

′
1) +DQ(b2, b

′
2)

2
, (11)

where b′1 and b′2 are left and upper blocks of the candidate, and
DQ is the perceptual quality measurement. This measurement
is a function of structural similarity metrics and JND distortion
measurement. For example

DQ(x, y) =
SSIM(x, y)

γlog(DStD)
, (12)

or
DQ(x, y) = SSIM(x, y),

where SSIM is defined in (1), γ is a constant scale factor and
DStD is the supra-threshold distortion of y as compared to
x [13]. Given x is the target block and y is the predicted block,
let X,Y represent the DCT transform of x, y respectively, the
supra-threshold distortion for the block is

DStD =

∥∥∥∥ |X − Y |T

∥∥∥∥ =
∥∥∥ ε
T

∥∥∥ , (13)

where T is the local JND in DCT sub-bands for this target
block from (4) as described in Section III.

If the target x has only one of the upper or left neighboring
blocks, then for each candidate only the available neighboring
block is used to compute D in (11). If the target x is the first
block processed in the image, then a uniform block with pixel
values of 128 is used as the prediction. All the perceptual
quality measurements of candidates in the search region are
computed, except for the initial target. The measurements
are sorted and the candidates with best K measurements are
selected. If in some case the number of valid candidates is less
than K, then K ′ < K candidates are also acceptable.

Once the best candidates have been determined, we propose
two prediction schemes. The prediction x̂ of target x is



a linear combination of up to K best candidates zk, k =
{0, 1, ...,K−1}. The following subsections show two algo-
rithms to find the weights wk for linearly combining the
candidates zk.

A. Joint Prediction and Quantization with Weight Signaling
(WS)

Let the DCT transform of the target be Xm,n and
the DCT transform of candidates be Zk,m,n, m, n =
{0, 1, 2, ..., N−1} , k = {0, 1, 2, ...,K−1}. The prediction in
spatial domain is denoted as x̂i,j , i, j = {0, 1, 2, ..., N−1}
and its DCT transform as X̂m,n. The residue of DCT coeffi-
cients is then

εm,n = Xm,n − X̂m,n, m, n = {0, 1, ..., N−1} . (14)

We would like to have the prediction minimizes the total
quantization levels. At sub-band (m,n), the quantization level
is the residue εm,n in DCT sub-band (m,n) divided by the
quantization step Tm,n (ignore rounding if possible). Thus the
predictor will try to find the weights wk, k = 0, 1, ...,K−1
that minimize the p-norm of quantization levels:

w∗k = argmin
wk

∑
m,n

∣∣∣∣ εm,n

2Tm,nmax
(∣∣E(|X|)

Tm,n

∣∣ε, 1)
∣∣∣∣p

= argmin
wk

∑
m,n

∣∣∣∣
∑
i,j(
∑
k wkzi,j − xi,j)ψi,mψj,n

2Tm,nmax
(∣∣E(|X|)

Tm,n

∣∣ε, 1)
∣∣∣∣p

= argmin
wk

∑
m,n

∣∣∣∣ ∑
k wkZm,n −Xm,n

2Tm,nmax
(∣∣E(|X|)

Tm,n

∣∣ε, 1)
∣∣∣∣p, (15)

where as in (10), ε = 0.6, E(|X|) is the mean magnitude of
sub-band coefficients of target, and ψi,m, ψj,n comprise the
DCT basis. The expression (15) comes from the linearity of
DCT. The exponent p is typically 1 or 2.

B. Joint Prediction and Quantization Weighted by Quality
Predictor (WQ)

A simpler predictor can be built by assuming that the high
quality candidates should have higher weights.

wk =
Dk∑
kDk

, k = 0, 1, ...,K−1, (16)

where Dk = D(x, zk) is the perceptual quality measurement
between target x and candidate zk in (11).

C. Comparison of Predictors

An example of the prediction using (11) in HEVC is shown
in Fig. 5. The corresponding predictor using the original
HEVC prediction method is shown in Fig. 6. We can see that
in some regions such as on the grass and on parts of the horse,
the prediction using the perceptual metric (11) better resembles
the original texture than with the HEVC predictor. However,
as the search candidates are limited to a small transition area,
the edges are less preserved.

Both the Joint Prediction and Quantization with Weight Sig-
naling (WS) and Joint Prediction and Quantization Weighted

Fig. 5. Prediction using perceptual metric in HEVC with JND scaling ζ = 2.5.

Fig. 6. Prediction using unmodified HEVC with QP = 28.

by Quality (WQ) methods find up to K weights. As a result,
the prediction will be a linear combination of candidates:

x̂ =
∑
k

w∗kzk, k = 0, 1, ...,K−1. (17)

Since the candidates are computed via template matching
using a perceptual quality metric in the reconstructed image
as discussed in Section I-B, both the encoder and decoder can
find the same candidates, eliminating the need for the encoder
to signal the locations of these candidates. WS requires trans-
mitting weights w∗k, so that x̂ can be computed directly from
the best K candidates and weights received by the decoder.
WQ, however, does not require extra bits to be signaled,
since the weights are a function of quality measurements.
In both schemes, the local mean of the magnitudes of target
DCT coefficients E(|X|) is used. However, this value is not
available at the decoder. To resolve this issue, the decoder can
estimate E(|X|) using the mean magnitude DCT coefficients
of candidates and/or of the neighboring block of targets as
in [13], [35].

D. Rate-Distortion Optimization

Since we use perceptual quality metrics in both prediction
and quantization, the metric used in Rate-Distortion Optimiza-
tion (RDO), which controls the encoder as shown in Fig. 2,
should also be modified correspondingly. The QP parameter in
HEVC is no longer effective for this purpose in the proposed
scheme. In order to control the rate of the coder, the idea of
minimally noticeable distortion (MND) [6] is modified and
used here. Therefore, TCSF is scaled by a constant ζ ≥ 1:

|εm,n| < ζ · TCSF (m,n) · a′CM (m,n), (18)



where

a′CM (m,n) =

{
max

(
1,
∣∣ E(|X|)
ζTDCT (m,n)

∣∣ε), m 6= 0, n 6= 0

1, otherwise.
(19)

Thus, the larger ζ is, the lower rate going to be. The cost
function in HEVC is then

C = DStD + λR, (20)

where DStD defined in (13) and λ is a constant.

V. EXPERIMENTAL RESULTS

In order to use the model in Section III, viewing
conditions must be specified. The authors used a NEC
LCD220WX display with resolution 1680×1050 and screen
size 472mm×292mm. The viewing distance Dv depends on
the frame size:

Dv = 4Hframe(Hscreen/Hresolution). (21)

The display was calibrated using The Lagom LCD monitor test
pages [43]. The maximum luminance of the display device was
300 cd/m2. After calibration, the display luminance was set to
Lmax=150 cd/m2. Since the contrast ratio of display is 1000:1,
the minimum luminance is Lmin=0.3 cd/m2. The bit depth is
8, so M=256. The viewing angle was approximately 0◦.

For the simulations, the maximum Coding Unit Size
(MaxCU) is set to 32. The Max CU partition Depth is 1, so
only 32x32 and 16x16 CUs are used. The Transform Unit (TU)
size is restricted to 16. The remaining coding parameters use
the default All-Intra Main common test conditions from [44].
HM 6.1 is used as a code base. The luma channel is coded
using proposed approach, and chroma channels are coded
using the original HEVC methods. γ in (12) is empirically
set to 0.2. The value of λ in (20) was decreased by 20% from
the original value used in the HEVC encoder, as determined
in separate experiments.

Three test sequences were coded: RaceHorses (832×480,
20 frames), Cactus (cropped to 1920×1024, 20 frames) and
SlideEditing (cropped to 1280×704, 10 frames). Because WS
incurs a rate penalty from signaling weights, we will focus on
WQ in this section.

Results for RaceHorses are shown in Fig. 7. The original
frame is shown in 7(a), and Fig. 7(b) was coded using HEVC
with QP=28. The WQ-coded frame using ζ=2.5 is shown
in Fig. 7(c). The average bit rates over 20 Intra frames for
these examples are 9.2 kbps and 9.6 kbps, respectively. With
HEVC, some areas such as the horse are smoothed, as shown
in Fig. 8(b) and Fig. 8(a)). The proposed approach does a
better job at reproducing the textures, although there still are
some blocking artifacts. Moreover, in the pad under the saddle
(Fig. 8(c)) and grass region (Fig. 8(d)), the contrast of the
proposed approach is improved as compared to HEVC. Note
that the PSNR using HEVC in Fig. 7(b) is 35.73 dB and the
PSNR for the proposed method in Fig. 7(c) is 33.65 dB. The
fact that proposed approach has better perceptual quality shows
PSNR is does not always reflect the perceived quality of an

(a) Original

(b) HEVC, QP=28, 35.73 dB, StD=77408; 9207 kbps

(c) WQ, ζ=2.5, 33.65 dB, StD=48022; 9617 kbps

Fig. 7. RaceHorses coded using HEVC and the proposed WQ approach

image. During the encoding process, using (13) to compute
the perceptual measure of the prediction error, the total StD
over all blocks for this case is 77408 and 48022 for HEVC
and WQ, respectively. Additional results are shown in Fig. 9
for Cactus and Fig. 10 for SlideEditing.

VI. CONCLUSIONS

We proposed a new coding scheme which jointly applies
SSIM and JND models for prediction, quantization and rate-
distortion optimization within HEVC. This work focused on
introducing a new predictor which uses template matching
along with a perceptual quality measurement to select mul-
tiple prediction candidates. The perceptual quality measure-
ment was derived from a joint SSIM and JND model. The
selected candidates were filtered either by minimizing the
supra-threshold distortion during quantization, or via a linear
combination weighted by perceptual quality. We modified the
existing JND model and use super-threshold distortion in rate-
distortion optimization as well. The proposed approach yields
a lower PSNR than HEVC at similar rates. However, the



(a) horse/pad

(b) horse

(c) Saddle

(d) Grass

Fig. 8. RaceHorses comparison in detail: original (left), HEVC (middle), WQ
(right)

(a) Original

(b) HEVC, QP=31, 35.5 dB, StD=181413; 34874 kbps

(c) WQ, ζ=2.5, 32.5 dB, StD=90675; 36190 kbps

Fig. 9. Cactus coded using HEVC and the proposed WQ approach

(a) Original

(b) HEVC, QP=36, 27.7 dB, StD=145421; 18208 kbps

(c) WQ, ζ=2.5, 24.5 dB, StD=91705; 18652 kbps

Fig. 10. SlideEditing coded using HEVC and the proposed WQ approach

proposed approach exhibits a better perceptual quality than
HEVC. The perceptual quality could also be measured by
supra-threshold distortion.

Modeling the perceptual quality of the Human Vision
System (HVS) is still an open question. SSIM alone cannot
accurately achieve the quality measurement performance of
HVS. The existing JND models derived from simple psy-
chophysics studies may not describe HVS thoroughly. As a
result, perceivable distortion which is not characterized by the
JND model may still exist. Also, bits may be unnecessarily
allocated for coding imperceptable distortion. We noticed at
low rates, for which the JND scaling ζ is large, there were
many blocking artifacts. This would be caused by suboptimal
tuning between the proposed coding approach and HEVC
tools. The constant λ in rate-distortion optimization should
also be further studied.

The proposed approach which performs joint perceptual
optimization of prediction and quantization could be general-
ized for other image and video coding techniques. New JND
models and perceptual quality metrics can also be adopted into
this paradigm.
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