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Abstract

The advent of Compressive Sensing has provided significant mathematical tools to enhance the
sensing capabilities of hardware devices. In this paper we apply Compressive Sensing to im-
prove over-the-air ultrasonic sensing capabilities. We demonstrate that using an appropriate
scene model it is possible to pose three-dimensional surface reconstruction of a scene as a sparse
recovery problem. By transmitting incoherent wideband ultrasonic pulses and receiving their
reflections a sensor array can sense the scene and reconstruct it using standard CS reconstruc-
tion algorithms. We further demonstrate that it possible to construct virtual arrays that exploit
the sensors motion. Thus we can obtain three-dimensional scene reconstruction using a linear
mobile array.
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ABSTRACT

The advent of Compressive Sensing has provided significant math-
ematical tools to enhance the sensing capabilities of hardware de-
vices. In this paper we apply Compressive Sensing to improve over-
the-air ultrasonic sensing capabilities. We demonstrate that using
an appropriate scene model it is possible to pose three-dimensional
surface reconstruction of a scene as a sparse recovery problem. By
transmitting incoherent wideband ultrasonic pulses and receiving
their reflections a sensor array can sense the scene and recon-
struct it using standard CS reconstruction algorithms. We further
demonstrate that it possible to construct virtual arrays that exploit
the sensors’ motion. Thus we can obtain three-dimensional scene
reconstruction using a linear mobile array.

Index Terms— Compressed Sensing, Ultrasonic transducer ar-
rays, Ultrasonic imaging

1. INTRODUCTION

Ultrasonic transducers are ubiquitous inexpensive sensing devices
with wide applications in medical imaging, material testing, under-
water acoustics and communications, and over-the-air distance sens-
ing and ranging. Over-the-air applications, in particular, are numer-
ous and include automotive sensing for parking and lane change as-
sistance, indoor robotic navigation, localization of beacons, and ob-
ject distance estimation.

Current sensing approaches use narrowband ultrasonic sensors,
operating independently or in a phased array configurations. Simple
ranging estimation is usually performed by transmitting an ultrasonic
pulse and determining the time-of-flight to reach the nearest object
and return to the transducer by computing a simple cross-correlation
of the transmitted and the received signal. More challenging local-
ization applications use a steerable phased array of sensors to scan
the scene for the target and its distance [1].

In this paper we demonstrate how Compressive Sensing—a
very powerful recently emerged signal acquisition paradigm—can
be exploited to significantly improve ultrasonic sensing capabilities.
Specifically, we demonstrate that using wideband incoherent pulses,
separate for each transmitter, it is possible to obtain a very accurate
three-dimensional reconstruction of the sensed scene. In addition,
we illustrate how a synthetic array can be constructed to exploit
the motion of a physical array. Although we present the results in
the context of ultrasonic sensing, some of the principles and the
algorithms we describe are immediately applicable to other phased
array processing and radar applications.

The paper is organised as follows. The next section provides
some background on Compressive Sensing. Section 3 describes a
typical ultrasonic sensing system, the corresponding sensing and
scene model and the model for a synthetic array. The models are

used in Sec. 4 to formulate the recovery problem and the pulse de-
sign problem. We verify our results experimentally in Section 5.

2. COMPRESSIVE SENSING BACKGROUND

Compressive Sensing (CS) is a recently emerged field in signal pro-
cessing that enables signal acquisition using very few measurements
compared to the signal dimension, as long as the signal is sparse in
some basis [2–5]. Using CS, a signal x ∈ CN with only K non-zero
coefficients can be recovered from only M = O(K log(N/K)) lin-
ear non-adaptive measurements, compactly represented using

y = Ax,y ∈ CM , (1)

where A ∈ CM×N is the measurement matrix, modeling the mea-
surement system. To be able to recover all K-sparse signals x, it is
necessary that A does not map two distinct K-sparse signals to the
same measurement vector, i.e., that for all K-sparse vectors x1 6= x2

Ax1 −Ax2 = A(x1 − x2) 6= 0. (2)

Assuming (2), we can recover x by solving

bx = arg min
x∈CN

‖x‖0 subject to y = Ax, (3)

where the ‖ · ‖0 counts the number of non-zero coefficients. This
is an NP-hard problem in general and becomes infeasible in high
dimensions.

Computationally efficient exact signal recovery can be guaran-
teed if A obeys a restricted isometry property (RIP) of order 2K,
i.e., if there is a universal constant δ2K such that for all 2K-sparse z

(1− δ2K)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ2K)‖z‖22. (4)

If A has a small RIP constant δ2k, it approximately maintains `2
distances between K-sparse signals. In addition to efficient exact re-
covery, the RIP guarantees robustness to measurement noise and ro-
bustness to deviation from the strictly sparse signal model. Although
verifying the RIP also has combinatorial complexity, a surprising re-
sult is that random matrices with a sufficient number of rows can
achieve small coherence and small RIP constants with overwhelm-
ing probability [5].

There are two fundamental approaches to reconstruction from
CS measurements: convex optimization and greedy search algo-
rithms. If the measurement matrix obeys the RIP with sufficiently
small constant δ2K and there is no measurement noise, it is possible
to exactly recover signals from the measurement vector y using the
convex optimization [5]

bx = arg min
x∈CN

‖x‖1 subject to y = Ax. (5)



The RIP further guarantees robustness to noise and stable recovery
of compressible signals. Similarly, the RIP guarantees that greedy
sparse reconstruction algorithms—originating with the Matching
Pursuit [6]—robustly recover the signal. A recently emerged body
of literature provides a variety of greedy algorithms with such
guarantees, of which the Compressive Sampling Matching Pursuit
(CoSaMP) [7] and the Subspace Pursuit [8] are the most recent
examples.

3. ULTRASONIC SCENE SENSING

3.1. System Description

A general ultrasonic sensing system consists of a number of trans-
mitters and receivers arranged in some configuration in space. An
example is shown in Fig. 1. The S transmitters, depicted in green
triangles, transmit wide-band ultrasonic pulses which are reflected
from the objects in the scene and received by the L receivers, de-
picted in blue circles. In practice, the transmitters and the receivers
might be the same device (transducer), operating in different mode
during pulse transmission and reception.

The scene to be sensed is a three dimensional volume contain-
ing several objects. The scene can be analyzed by discretizing the
volume into N = Nx × Ny × Nz small volumes (voxels). Using
n = 1, . . . , N to linearly index these voxels, the reflectivity of each
voxel is denoted using xn. The reflectivity of each voxel is a non-
zero complex number if the volume corresponding to that voxel is
not empty and the voxel is not occluded by objects between the voxel
and the sensors. The reflectivity of the voxel is zero if it is empty or
if it is occluded from the sensors by another nonempty voxel. Thus
only the surface of each object facing the sensor array can be sensed
since the remaining object volume is occluded from the sensor array.
Our analysis ignores the effect of partial occlusions, i.e. voxels that
are occluded only for some of the sensors. The effect of partial oc-
clusions in practice is small compared to the overall precision of the
ultrasonic sensing system.

3.2. Scene Measurement

Since the transducers are wideband, each of them emits a wide band-
width of frequencies. The signal ps(t) emitted by each of the trans-
ducers can be represented by its discrete-time samples at the Nyquist
rate fo (i.e., twice the signal bandwidth, corresponding to period
To = 1/fo). This representation is very useful for digital signal
generation and processing. Thus, the discrete-time signal ps[m] =
ps(mTo) emitted by transmitter s can be decomposed to a sum of
discrete frequency tones using the discrete Fourier transform (DFT):

ps[m] =
X

f

Ps,fe−jωf m, s = 1, . . . , S, f = 1, . . . , F, (6)

where Pk,f are the DFT coefficients of pk, and ωf = 2πf/F is the
angular frequency of the corresponding tone.

Similarly the recorded signal at receiver l, rl(t) can be sampled
using rl[m] = rl(mT ) and decomposed using the DFT:

rl[m] =
X

f

Rl,fe−jωf m, l = 1, . . . , L, f = 1, . . . , F, (7)

where Rl,f are the DFT coefficients of rl.
Every voxel in the scene reflects the wideband ultrasonic pulse

received by each transmitter according to the voxel’s reflectivity xn.
Letting ds,n be the distance from transmitter k to voxel n and dn,l be
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Fig. 1. Ultrasonic Sensing System

the distance from voxel n to receiver l, the total path of an ultrasonic
pulse through voxel n is ds,l,n = ds,n + dn,l. Thus the total de-
lay from the transmission of the pule until the reception is ds,l,n/c,
where c is the speed of sound in air (or in the medium in which the
device operates). In terms of samples, τs,l,n = ds,l,n/cT .

Each receiver receives the sum of all the pulses transmitted from
all the transmitters as reflected from all the voxels. Thus, the DFT
coefficients for receiver l are as follows:

Rl,f =
X

n

 X
s

Ps,fe−jωf τs,l,m

!
xn, (8)

By stacking in one vector all the received frequency components
from all the receivers, the system can be described using the follow-
ing sensing equation:

r = Ax, (9)

r = [R1,1 . . . R1,F . . . RL,1 . . . RL,F ]T

x = [x1 . . . xN ]T

A =
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where r denotes the received coefficients vector, A the overall trans-
mission operator and x the scene reflectivity.

The goal of the recovery algorithm is to undo the action of A on
x and thus recover x from the measurements of the received coeffi-
cients r. Consequently, x is the recovered scene.

3.3. Virtual (Synthetic) Array Modeling

The same sensing model can be used to model a synthetic array in
which the sensor location changes and separate sets of data are ob-
tained from each location. The combined received data are subse-
quently used to reconstruct the scene. Thus the synthetic array has
significantly improved reconstruction capabilities compared to the
actual physical array. This operation is similar to the operation of a
synthetic aperture radar (SAR) which exploits the motion of a satel-
lite or an aircraft to image the earth.

The transducers sense (and obtain a snapshot of) the scene from
Q different positions. For each position, a sensing equation similar
to (9) can be written:

rq = Aqx, (10)
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where rq is the recorder pulses at the qth position, and Aq is the
sensing matrix, as derived by the geometry of the sensors and the
scene in the qth position. Combining the sensing equations from all
the positions results to the sensing equation:264 r1

...
rQ

375 =

264 A1

...
AQ

375x (11)

The computational methods in Sec. 4.1 can subsequently be used to
recover x from (11), even if recovery from separate snapshots in (10)
is not possible.

As an example consider the linear physical array pictured in
Fig. 2. Such an array, fundamentally, can only resolve two dimen-
sions: distance from the array and angle to array axis. There is a fun-
damental rotational ambiguity with axis of rotation the same as the
array axis. Still, by translating the array, a two-dimensional virtual
array can be generated which does not exhibit the rotational ambi-
guity. Assuming omnidirectional sensors, the virtual array only ex-
hibits a fundamental mirror ambiguity of which the mirroring plane
is the same as the array plane. With directional sensors or different
array motion, even this ambiguity can be resolved.

4. COMPRESSIVE ULTRASONIC SENSING

4.1. Measurement Processing and Scene recovery

The sensing systems described in (9) and (11) are, in general,
severely underdetermined systems. The scene size N will in most
cases be significantly larger than the number of possible measure-
ments. Thus, we need to assume that the sensed scene has further
structure that we can exploit.

Specifically, we assume the scene is sparse. Since most of
the scene is empty or occluded, most of the coefficients xn, n =
1, . . . , N are zeros. Therefore, we can safely assume that the vector
x contains at most Nx × Nz non-zero elements, i.e., at most 1/Ny

of its coefficients are non-zero. Usually the scene is even sparser in
practice.

Recovery of a sparse vector from the measured coefficients r
is possible using a variety of methods, as described in Sec. 2. One
example is a convex optimization formulation, which computes:

bx = arg min
x
‖x‖1 such that r ≈ Ax (12)

or bx = arg min
x
‖x‖1 + λ‖r−Ax‖22, (13)

where λ is a regularization parameter [9]. Another example is us-
ing a greedy algorithm such as matching pursuit (MP), orthogonal
matching pursuit (OMP), and CoSaMP [7]. If a model for the scene
is known, then model-based reconstruction algorithms can also be
used to improve the reconstruction quality [10].

In this work we use CoSaMP as the reconstruction algorithm be-
cause of its flexibility and its ability to handle complex arithmetic.
Using CoSaMP variations, it is very easy to accommodate scene
models, quantization, saturation, and streaming signals, as necessary
in the applications of the sensing system. [10–14].

4.2. Pulsing Design

Correct sparse recovery of the sensed scene depends on the coher-
ence properties of the sensing matrix A. These properties are con-
trolled by the design of the pulses, through their Fourier transform
coefficients Ps,f .

To ensure incoherency of the columns of A we select all co-
efficients Ps,f as independent and identically distributed complex
random variables. This empirically ensures that the S pulses are in-
coherent with each other.

An important parameter that affects our ability to design A is
the number of degrees of freedom available in the selection of Ps,f .
In particular, the duration of the pulse dictates the number of coeffi-
cients available when the pulse is sampled at the Nyquist rate, and,
therefore, the number of degrees of freedom in the discrete Fourier
transform of the signal. For example, a pulse of length M samples
(i.e., MTo = M/fo seconds) provides M total real-valued degrees
of freedom.

Still not all these parameters are available. In most over-the-air
ultrasonic sensing scenarios the part of the spectrum that is audible
by humans and some animals should not be used. For example if
the available bandwidth is 40-50KHz, only 20% of the degrees of
freedom are available. If the available bandwidth is 30-50KHz, 40%
of the degrees of freedom are available. For pulse duration D sec-
onds, and fraction b of bandwidth utilization, the available degrees
of freedom are bDfo.

The pulse duration is critical if the same transducers are used
both for transmission and reception. In particular, the distance of the
closest object in the scene determines the roundtrip time from the
instant the pulse starts being transmitted to the instant the pulse re-
turns to the sensor and should be received. If the total pulse duration
is longer than the roundtrip time, then the transducer will not have
completed the transmission and will not be able to receive part of the
reflected signal.

5. EXPERIMENTAL RESULTS

To validate our model we performed simulations using both physical
and virtual arrays, which we describe below.

Figure 3 demonstrates the simulation results for a physical ar-
ray with 5 transmitter elements and 3 receiver elements. Figure 3(a)
plots the original scene, to be acquired by the array, with the trans-
mitters represented by green triangles and the receivers represented
by blue circles. The transducers in the simulation were modeled af-
ter the ProWave 400WB160 ceramic transducer, with a bandwidth
of ∼15KHz [15]. The object colors in the scene represent the reflec-
tivity of each object.

An attempt to reconstruct the scene using least squares estima-
tion, i.e., using bx = A†y

is demonstrated in Fig. 3(b). Since the system is underdetermined,
this approach will produce the least `2-norm solution of the sensing
equation (9). In this attempt there was no noise added to the sensed
scene. As expected, least squares reconstruction fails to recover the
signal, even with ideal, noiseless acquisition.
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Fig. 3. Static array simulation experiments

Sparse recovery using CoSaMP, as described in this paper, is
shown in Figs. 3(c) and (d), for input SNR at 30dB and 20dB, re-
spectively. As shown in the figure, the higher the SNR the better the
reconstruction. Most of the error in Fig. 3(d) arises where nearby
objects are very close, and, therefore, the ambiguity is high.

One of the key observations in our simulations is that signifi-
cant diversity (i.e., incoherence of A), and therefore improved re-
construction, can be achieved by increasing the number of transmit-
ters without increasing the number of receivers. This has significant
computational advantages since only the number of receivers deter-
mines the size of A. Of course there are diminishing returns in the
benefit of increasing transmitters without simultaneously increasing
the number of receivers. The study of this trade-off is the subject of
a future publication.

Simulations using a virtual array are shown in Fig. 4. In this sim-
ulation a four-element transducer array is positioned in two different
locations with different measurements obtained from each location.
The transducers operate both as transmitters and as receivers at every
location by first transmitting the pulse and then receiving the reflec-
tion before moving to the next location. To avoid the fundamental
mirror-image ambiguity with respect to the plane of a two dimen-
sional array, as described in Sec. 3.3 the physical array is not linear.
The two transducers at the edges are elevated by 10cm compared to
the two middle ones. Because of the translation we have 8 effec-
tive transmitters and receivers. As evident from Fig. 4(b), we can
achieve fairly accurate reconstruction even at 10dB SNR, lower than
the simulations above.

The results we present validate our approach and demonstrate
that over-the-air ultrasonic sensing can be significantly enhanced us-
ing compressive sensing. The model presented is quite powerful and
amenable to further refinement, which we defer to future publica-
tion. Our initial investigation raises significant questions, such as
the optimal array design, and the sensing limits of the system, which
we continue to investigate.
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