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Abstract

The formation of synthetic aperture radar (SAR) images is formulated as an inverse problem, a
flexible approach suitable for a variety of acquisition systems and signal models. This paper fo-
cuses on increasing robustness to data saturation, specifically by optimizing a one-sided quadratic
cost function to promote consistency with the received data. We model the SAR acquisition pro-
cess using a linear function and we present an efficient implementation of this function and its
adjoint for use in iterative optimization algorithms. Improved image quality and robustness to
saturation are observed in experiments on synthetic images. Preliminary work on controlling
azimuth ambiguities and incorporating image models enables saturation-robust reconstruction
from satellite SAR data as well.
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ABSTRACT

The formation of synthetic aperture radar (SAR) images is formu-
lated as an inverse problem, a flexible approach suitable for a va-
riety of acquisition systems and signal models. This paper focuses
on increasing robustness to data saturation, specifically by optimiz-
ing a one-sided quadratic cost function to promote consistency with
the received data. We model the SAR acquisition process using a
linear function and we present an efficient implementation of this
function and its adjoint for use in iterative optimization algorithms.
Improved image quality and robustness to saturation are observed
in experiments on synthetic images. Preliminary work on control-
ling azimuth ambiguities and incorporating image models enables
saturation-robust reconstruction from satellite SAR data as well.

Index Terms— Synthetic aperture radar, inverse problems, data
saturation

1. INTRODUCTION

The study of inverse problems is a well-established discipline with
several applications in a variety of fields, including signal process-
ing. The theory of inverse problems examines when and how func-
tions can be inverted so as to infer the input to the function from
the output. Such problems are abundant in signal acquisition and
processing systems and the formulation of these problems as inverse
problems has produced significant results in the areas of de-noising,
de-blurring and super-resolution.

With appropriate modeling of an acquisition system, reconstruc-
tion becomes an inverse problem. Specifically, the signal of interest
is processed by the function implemented by the acquisition system,
and the reconstruction is the solution to the corresponding inverse
problem. With such modeling, the uniqueness of the solution or, if
the solution is not unique, the accuracy of the solution is of signifi-
cant interest.

In this paper, we study the formation of synthetic aperture radar
(SAR) images as an inverse problem. SAR is widely used in remote
sensing to obtain high-resolution, wide-area radar images using a
relatively small antenna. High resolution is made possible by ex-
ploiting the motion of the platform carrying the antenna (usually a
plane or satellite) to synthesize a much larger aperture. The acquisi-
tion process in SAR involves transmitting pulses at regular intervals
as the platform moves and recording the reflections to gain infor-
mation about the reflectivity of the surface below. We formulate
a general optimization approach to the formation of a reflectivity
image from these measurements. While the results we present fo-
cus on reconstructing images from saturated measurements, they are

straightforward to extend to a wide range of scenarios such as coarse
quantization or missing data.

In Section 2, we provide some background on inverse problems
and discuss SAR image formation and data saturation in this context.
In Section 3, we describe key aspects of our algorithm for saturation-
robust SAR image formation. Experimental results on synthetic and
satellite SAR data are reported in Section 4.

2. BACKGROUND

2.1. Inverse Problems

A common inverse problem in signal processing is the recovery of a
signal x from a set of measurements y,

y = A(x) + n, (1)

where the function A models the acquisition system and n repre-
sents measurement noise. The goal of the reconstruction process is
to determine a signal estimate bx that is close to x.

If the acquisition function A is easily invertible and the measure-
ment noise is negligible, an obvious choice is to use the inverse of
A to determine x. However, this method may fail if A is not injec-
tive, i.e., the data can be explained by multiple signals, or if there is
considerable noise. A more general approach is to estimate x by the
following minimization:

bx = arg min
x

f(y, A(x)) + λg(x), (2)

where f(·, ·) is a cost function measuring data fidelity according to
the properties of the acquisition system and the noise, g(x) is a reg-
ularizer that incorporates knowledge about the signal of interest and
penalizes unwanted solutions, and λ controls the trade-off between
the two terms. The formulation in (2) offers flexibility in accommo-
dating a range of acquisition scenarios and signal models.

In the special case where f(y, A(x)) = ‖y − A(x)‖2, g(x) =
0, A is linear, and the system is overdetermined, the solution to (2) is
to use the pseudoinverse A†. The pseudoinverse is also the solution
if instead the system is underdetermined and g(x) = ‖x‖2, i.e., a
least-energy solution is desired.

2.2. SAR Image Formation

The formation of SAR images can be formulated as an inverse prob-
lem. Specifically, the ideal SAR acquisition process can be viewed
as a linear system, i.e., an instance of (1) in which x represents a 2-D
image of surface reflectivity, y represents the received data, and the
function A is linear. We will henceforth use the matrix notation A to



represent a linear acquisition function. The received data are usually
arranged in a 2-D form similar to the SAR image. The samples of
each reflected pulse can be thought of as forming a row vector, with
different reflected pulses stacked together to form a matrix of data.
Each row of the matrix corresponds to a different position of the
platform along its path. The dimension along the path is referred to
as the azimuth. Each column corresponds to a delay from the trans-
mission of a pulse. Since the delay is proportional to the distance the
pulse has traveled, this second dimension is referred to as the range.

Several existing image formation algorithms can be interpreted
from the viewpoint of inverse problems as computing approxima-
tions to the pseudoinverse A†. The approximations allow for effi-
cient implementations. For example, many algorithms rely on pulse
compression, the approximate deconvolution of a received signal
through correlation with the transmitted pulse. The correlation can
be made highly efficient by using Fast Fourier Transform (FFT) al-
gorithms. Pulse compression corresponds to the exact inverse (at
least within the bandwidth of interest) if the received pulse is sam-
pled at the Nyquist rate, and corresponds closely to the pseudoin-
verse if the received pulse is slightly oversampled, which is usually
the case in practical SAR systems.

One of the most widely used image formation algorithms is the
Chirp Scaling Algorithm (CSA), first published in [1] and also de-
scribed in [2]. A simplified block diagram for the CSA is shown in
Fig. 1. In addition to pulse compression, the CSA also employs
a technique known as chirp scaling, which approximates a time-
varying delay of a linear chirp signal by means of multiplications
with two other chirp signals. Chirp scaling is used in the CSA to
correct for range migration, the variation in distance to a given tar-
get (and hence its associated delay) caused by the motion of the plat-
form. The CSA is a very efficient algorithm due to its composition
in terms of FFTs and multiplications only. For this reason, it will
form the basis for our method of computing the acquisition function
A and its adjoint as described in Section 3.1.
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Fig. 1. Block diagram for the CSA.

Saturation of data values as discussed in Section 2.3 is a sig-
nificant problem in SAR acquisition because of large fluctuations in
data amplitudes and the use of low-precision quantizers [citation?].
Moreover, conventional image formation algorithms do not specif-
ically address saturation. In the next section, we discuss how data
saturation can be handled within the inverse problem framework.

2.3. Saturation and Inverse Problems

Signal saturation is a very common problem encountered in analog-
to-digital (A/D) conversion systems. The electronics have a finite
voltage range beyond which the signal amplitude is not allowed to
vary and the quantizer uses a finite number of quantization levels. If
the acquired signal amplitude varies beyond a saturation threshold
±T , then the acquired signal amplitude saturates to ±T .

Although saturation on its own is undesirable, in the presence of
severe quantization it can be beneficial. Specifically, increasing the
gain of the signal and promoting saturation also increases the signal-
to-quantization noise ratio in the unsaturated measurements. If the

saturation is appropriately taken into account, overall reconstruction
performance can be increased [].

The most common approach to handling saturation—using the
saturated values at face value in the reconstruction as if no satura-
tion occurred—produces severe artifacts. Instead the reconstruction
error can be reduced using a consistent reconstruction approach, i.e.,
ensuring that the reconstructed signal estimate produces the same
saturation if re-sampled. Consistent reconstruction, first introduced
in [], significantly improves the reconstruction error when used with
quantized and saturated measurements []. This is the approach we
use in this paper.

Using the same formulation as before, we can represent a linear
system with finite dynamic range using

y = S(Ax), (3)

whereA is the system acquisition matrix, and S(·) is the non-linear
scalar saturation function, depicted in Fig. ??

S(x) = sign (x)max{|x|, T} (4)

applied element-wise to all the components of its input.
Instead of the classical least-squares fidelity criterion, to ensure

consistent reconstruction we enforce a one-sided quadratic penalty
on saturated measurements. More specifically, we use the cost func-
tion

f(y,Ax) =
1
2

∑

i

r2
i (yi, (Ax)i), (5)

ri(yi, (Ax)i) =






(Ax)i − yi |yi| < T

((Ax)i − T )− yi ≥ +T

((Ax)i + T )+ yi ≤ −T,

(6)

where (y)− = min(y, 0), (y)+ = max(y, 0), and i indexes the real
and imaginary parts of the data separately. This penalty, commonly
used in other consistent reconstruction approaches, has the advan-
tage that it penalizes inconsistent solutions, is simple to optimize
for and, due to its quadratic nature, provide significant robustness to
additive noise before the saturation occurs.

Although minimizing this saturation-robust penalty often pro-
duces acceptable solutions, a signal model can also be used to further
resolve the ambiguities inherent in saturation and quantization.

3. SATURATION-ROBUST SAR IMAGE FORMATION

3.1. Implementation ofA andAH

The saturation-robust cost function in (5) can be minimized using
a variety of iterative optimization algorithms. Most of these algo-
rithms require repeated computation of the acquisition function A
and its adjoint AH . Efficient implementation of these functions is
especially important in SAR reconstruction because of the high di-
mensionality of the images.

To achieve efficiency, we base our implementation on the CSA
discussed in Section 2.2. Given that the CSA is an approximation
to the pseudoinverseA†, the acquisition functionA has a block dia-
gram, shown in Fig. 2, that is essentially the reverse of the one for the
CSA. To implement the adjoint, we exploit the fact that the adjoint
of a composition of functions is the composition of the individual
adjoints in reverse order. The adjoint of the FFT is the IFFT (up to
a scale factor) and the adjoint of multiplication by a function is mul-
tiplication by the complex conjugate of the same function. Hence
the adjoint has the same block diagram as the CSA with the azimuth

Fig. 1. Block diagram for the CSA.
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a scale factor) and the adjoint of multiplication by a function is mul-
tiplication by the complex conjugate of the same function. Hence
the adjoint has the same block diagram as the CSA with the azimuth
compression function replaced by H∗

a(R0, fη) and the range com-
pression function replaced by P ∗

2df (fτ , fη).
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Fig. 2. Block diagram for the acquisition functionA.

We now describe our implementation of the function A in
greater detail. We assume that the image x consists of a rectangular
grid of point targets and we focus on the response due to a single
point target of unit amplitude. SinceA is shift-invariant in azimuth,
we may equivalently specify the response in the range-Doppler
(range time τ , azimuth frequency fη) domain. This is reflected in
the implementation of Fig. 2 by the azimuth FFT and IFFT at the
beginning and end of the block diagram. For a unit point target at
range of closest approach R0, the range-Doppler response is given
approximately by

Hrd(τ, fη) = Ha(R0, fη)p

(
τ −

2R0

cD(fη)
, fη

)
, (7)

whereHa(R0, fη) is the azimuth frequency response, p(τ, fη) is the
transmitted pulse, D(fη) is the range migration factor, and c is the
speed of light. The pulse p(τ, fη) is assumed to be a linear chirp and
is a weak function of fη in the range-Doppler domain. A detailed
derivation of (7) and formulas for the quantities appearing in (7) and
Fig. 2 can be found in [2]. The response in (7) is not shift-invariant in
range because of the presence of the range migration factor D(fη).
However, in the case of a linear chirp pulse, chirp scaling can be used
to approximate the range response in (7) by means of a convolution
with a modified chirp preceded and followed by multiplications with
chirp scaling functions. The convolution is implemented using the
FFT as a multiplication with the Fourier transform P2df (fτ , fη) as
shown in Fig. 2.

Comparison of Figs. 1 and 2 shows that the complexity of com-
puting A is the same as that of the CSA. All of the functions in
Fig. 2 that are multiplied with the signal can be pre-computed and
stored for faster computation. In a discrete-time implementation,
care should be taken to use sufficiently high sampling rates to repre-
sent Ha(R0, fη) and P2df (fτ , fη) with minimal aliasing.

3.2. Basic Optimization Algorithm

We use a first-order gradient descent algorithm to minimize (5).
More sophisticated second-order algorithms may be considered
in future work. In each iteration, a step of size τ is taken in the
direction opposite to the gradient g, i.e., the iterates are updated as

x← x− τg.

The gradient g corresponding to (5) is given by

g = AHr,

where r is the residual vector with components given in (6) and A
and AH are computed as described in Section 3.1. The step size τ
is chosen optimally through an exact line search, which minimizes
the function f(y,Ax) along a line parallel to the negative gradient
−g. This results in a 1-D convex piecewise-quadratic function that
can be minimized efficiently; we omit the details from this paper.

3.3. Azimuth Ambiguity and Model Mismatch

Ambiguity in the azimuth frequency domain due to undersampling
is an issue affecting many SAR image formation algorithms. The
azimuth sampling rate, which is equal to the pulse repetition fre-
quency, is typically insufficient to accommodate the bandwidth of
the azimuth response Ha(R0, fη) and cannot be increased without
decreasing the width of the imaged region. The undersampling re-
sults in aliasing, which manifests itself in the form of ghost images
superimposed at specific azimuth and range offsets [3]. Recovery
from aliasing is difficult without additional information regarding
the image. It cannot be assumed, for example, that the image itself
is bandlimited.

In the basic algorithm described in Sections 3.1 and 3.2, mis-
match between the true acquisition system and the model used in
the reconstruction poses an additional challenge. For example, the
azimuth response Ha(R0, fη) depends on parameters such as the
length and weighting pattern of the antenna. The values of these pa-
rameters may not be known precisely, potentially leading to incorrect
results. In particular, our experience suggests that model mismatch
tends to exaggerate the ghost images caused by azimuth ambiguity.

One method to reduce ghosting is to filter the data, either non-
adaptively [3] or adaptively in space [4], to remove azimuth frequen-
cies that are most affected by aliasing. However, this approach may
reduce the amount of data available for reconstruction and conse-
quently the resolution of the resulting image.

An alternative approach that we have explored at a preliminary
level is to perform ghost removal at the end of each iteration in the
basic algorithm above. We exploit the ability to predict the locations
of ghosts relative to the corresponding true target based on knowl-
edge of SAR parameters. In the first iteration of the algorithm, image
regions that are likely to be dominant sources of ghosts are identified
as proposed in [4], first by forming a low-resolution, ambiguity-free
image and then comparing the local power between regions sepa-
rated by distances characteristic of ghosts. In subsequent iterations,
ghosts due to dominant sources are estimated by correlating the cur-
rent image with itself, one azimuth line at a time, and then subtract-
ing the estimates from the image. Restricting the estimation and sub-
traction to dominant sources allows for efficient removal of ghosts.

In the context of inverse problems, our method can be thought
of as adding an explicit constraint to the reconstruction optimiza-
tion problem (2), specifically on the autocorrelation of the image
at certain locations and shifts. This is based on the premise that
large autocorrelation values should not occur in ghost-free images.
An alternative would be to incorporate such knowledge in the signal
model term g(x).

3.4. Signal Models

Significant improvements in reconstruction accuracy can be achieved
by incorporating signal models in the reconstruction. In addition to
the ghost reduction model described above, natural images exhibit
significant structure. The model we impose in this work is that the
wavelet transform of the magnitude of the SAR images is sparse.
We use soft thresholding in a manner similar to the FPC algorithm []
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the implementation of Fig. 2 by the azimuth FFT and IFFT at the
beginning and end of the block diagram. For a unit point target at
range of closest approach R0, the range-Doppler response is given
approximately by
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where Ha(R0, fη) is the azimuth frequency response, p(τ, fη) is
the transmitted pulse, D(fη) is the range migration factor, and c
is the speed of light. The pulse p(τ, fη) is assumed to be a linear
chirp and is a weak function of fη in the range-Doppler domain. A
detailed derivation of (7) and formulas for the quantities appearing
in (7) and Fig. 2 can be found in [2]. The response in (7) is not shift-
invariant in range because of range migration represented by D(fη).
However, in the case of a linear chirp pulse, chirp scaling can be used
to approximate the range response in (7) by means of a convolution
with a modified chirp preceded and followed by multiplications with
chirp scaling functions. The convolution is implemented using the
FFT as a multiplication with P2df (fτ , fη), the Fourier transform of
p(τ, fη) with respect to τ , as shown in Fig. 2.

Comparison of Figs. 1 and 2 shows that the complexity of com-
puting A is the same as that of the CSA. All of the functions in
Fig. 2 that are multiplied with the signal can be pre-computed and
stored for faster computation. In a discrete-time implementation,
care should be taken to use sufficiently high sampling rates to repre-
sent Ha(R0, fη) and P2df (fτ , fη) with minimal aliasing.

3.2. Basic Optimization Algorithm

We use a first-order gradient descent algorithm to minimize (5).
More sophisticated second-order algorithms may be considered
in future work. In each iteration, a step of size τ is taken in the
direction opposite to the gradient g, i.e., the iterates are updated as

x← x− τg.

The gradient g corresponding to (5) is given by

g = AHr,

where r is the residual vector with components given in (6) and A
and AH are computed as described in Section 3.1. The step size τ is
chosen optimally through an exact line search, which minimizes the
function f(y,Ax) along a line parallel to the negative gradient −g.
This leads to a 1-D convex piecewise-quadratic function that can be
minimized efficiently; we omit the details from this paper.

3.3. Azimuth Ambiguity and Acquisition Model Mismatch

Ambiguity in the azimuth frequency domain due to undersampling
is an issue affecting many SAR image formation algorithms. The
azimuth sampling rate, which is equal to the pulse repetition fre-
quency, is typically insufficient to accommodate the bandwidth of
the azimuth response Ha(R0, fη) and cannot be increased without
decreasing the width of the imaged region. The undersampling re-
sults in aliasing, which manifests itself in the form of ghost images
superimposed at specific azimuth and range offsets [7]. Recovery
from aliasing is difficult without additional information regarding
the image. It cannot be assumed, for example, that the image itself
is bandlimited.

In the basic algorithm described in Sections 3.1 and 3.2, mis-
match between the true acquisition system and the model used in
the reconstruction poses an additional challenge. For example, the
azimuth response Ha(R0, fη) depends on parameters such as the
length and weighting pattern of the antenna. The values of these pa-
rameters may not be known precisely, potentially leading to incorrect
results. In particular, our experience suggests that model mismatch
tends to exaggerate the ghost images caused by azimuth ambiguity.

One method to reduce ghosting is to filter the data, either non-
adaptively [7] or adaptively in space [8], to remove azimuth frequen-
cies that are most affected by aliasing. However, this approach may
reduce the amount of data available for reconstruction and conse-
quently the resolution of the resulting image.

An alternative approach that we have explored at a preliminary
level is to perform ghost removal at the end of each iteration in the
basic algorithm above. We exploit the ability to predict the locations
of ghosts relative to the corresponding true target based on knowl-
edge of SAR parameters. In the first iteration of the algorithm, image
regions that are likely to be dominant sources of ghosts are identified
as proposed in [8], first by forming a low-resolution, ambiguity-free
image and then comparing the local power between regions sepa-
rated by distances characteristic of ghosts. In subsequent iterations,
ghosts due to dominant sources are estimated by correlating the cur-
rent image with itself, one azimuth line at a time, and then subtract-
ing the estimates from the image. Restricting the estimation and sub-
traction to dominant sources allows for efficient removal of ghosts.

In the context of inverse problems, our method can be thought
of as adding an explicit constraint to the reconstruction optimiza-
tion problem (2), specifically on the autocorrelation of the image
at certain locations and shifts. This is based on the premise that
large autocorrelation values should not occur in ghost-free images.
An alternative would be to incorporate such knowledge in the signal
model term g(x).

3.4. Signal Models

Significant improvements in reconstruction accuracy can be achieved
by incorporating signal models in the reconstruction. Natural im-
ages, including SAR images, exhibit predictable structure that can
be exploited. In addition to the ghost reduction model described in
Section 3.3, in this work we also impose a sparsity requirement on
the wavelet transform of the magnitude of the SAR image. We use



C
SA
!

R
ob

us
t!

15% Sat.! 30% Sat.!5% Sat.! 10% Sat.!

Fig. 3. Images reconstructed from saturated synthetic data.

soft thresholding in a manner similar to the FPC algorithm [9] to
impose the model. At the end of every iteration of our algorithm, we
transform the magnitude of the image, perform soft-thresholding,
and transform back while maintaining the same phase.

The motivation for this model is that the magnitude of a SAR
image looks similar to a natural image and is therefore compress-
ible using a wavelet transform. On the other hand, the phase of the
image—which depends on the variation in height of the features be-
ing imaged and undergoes severe wrapping—does not appear to of-
fer structure that can be exploited in the reconstruction.

4. EXPERIMENTAL RESULTS

To better understand the behavior of our algorithms, we perform ex-
periments using data synthesized from simple test images with an
SNR of 0 dB. In experiments with synthetic data, we do not assume
a signal model or perform ghost image reduction because the exam-
ples we consider do not exhibit significant ghosting. Fig. 3 shows
reconstruction results for strip and point targets with 5%, 10%, 15%,
and 30% of the data values saturated. The top row shows images
reconstructed using the CSA with no special treatment for saturated
values. The bottom row shows images reconstructed using the robust
consistent reconstruction algorithm described in this paper. Due to
lack of space we show only a small set of the reconstructed images;
similar results are obtained for different saturation levels and images.

The results in Fig. 3 demonstrate substantial improvements due
to consistent reconstruction. For strip targets, the CSA results in
considerable attenuation whereas consistent reconstruction produces
brighter and sharper images. Similarly for point targets, the CSA
yields attenuated targets and enlarged side-lobes. These distortions
are significantly reduced using consistent reconstruction. Inspection
of the reconstructed image values confirms these findings.

We also compare our consistent reconstruction algorithm to the
CSA using satellite SAR data taken from [2], where our algorithm
now includes ghost reduction and wavelet thresholding with only
30% of wavelet coefficients permitted to be non-zero. Fig. 4(a)
shows an image produced by the CSA from unsaturated data, while
Figs. 4(b) and 4(c) show the same image produced from a simulated
30% saturation rate using the CSA and the consistent reconstruction
algorithm respectively. All of the images are scaled and displayed in
a consistent way, thus demonstrating that the landmass reconstructed
by the CSA under saturation in Fig. 4(b) is much fainter than in the
other two images. The loss of contrast agrees with our results on
synthetic images in Fig. 3. On the other hand, the consistent recon-
struction in Fig. 4(c), while somewhat blurred compared to the un-
saturated case, retains much of the contrast. Although not apparent
at the scale used in this paper because of space constraints, the CSA
images, both with and without saturation, are noisier than the image

(a) CSA unsaturated (b) CSA 30% sat.

(c) Robust 30% sat.

(a) CSA unsaturated (b) CSA 30% sat.

(c) Robust 30% sat.

(a) CSA unsaturated (b) CSA 30% sat.

(c) Robust 30% sat.

Fig. 4. Images formed from satellite SAR data using the CSA with
(a) unsaturated and (b) 30% saturated data, and (c) robust consistent
reconstruction with 30% saturated data.

produced by our algorithm. Further experimentation demonstrated
that the improved image quality is mostly due to the saturation-
robust formulation of our algorithm, while the denoising effect is
mostly due to the signal model.
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