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Abstract
We describe an algorithm that performs regularized non-negative matrix factorization (NMF)
to find independent components in non-negative data. Previous techniques proposed for this
purpose require the data to be grounded, with support that goes down to 0 along each di-
mension. In our work, this requirement is eliminated. Based on it, we present a technique
to find a low-dimensional decomposition of spectrograms by casting it as a problem of dis-
covering independent non-negative components from it. The algorithm itself is implemented
as regularized non-negative matrix factorization (NMF). Unlike other ICA algorithms, this
algorithm computes the mixing matrix rather than an unmixing matrix. This algorithm
provides a better decomposition than standard NMF when the underlying sources are inde-
pendent. It makes better use of additional observation streams than previous nonnegative
ICA algorithms.
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ABSTRACT

We describe an algorithm that performs regularized non-negative
matrix factorization (NMF) to find independent components in non-
negative data. Previous techniques proposed for this purpose require
the data to be grounded, with support that goes down to 0 along each
dimension. In our work, this requirement is eliminated. Based on
it, we present a technique to find a low-dimensional decomposition
of spectrograms by casting it as a problem of discovering indepen-
dent non-negative components from it. The algorithm itself is imple-
mented as regularized non-negative matrix factorization (NMF). Un-
like other ICA algorithms, this algorithm computes the mixing ma-
trix rather than an unmixing matrix. This algorithm provides a better
decomposition than standard NMF when the underlying sources are
independent. It makes better use of additional observation streams
than previous nonnegative ICA algorithms.

Index Terms— matrix decomposition, ICA

1. INTRODUCTION

The problem of finding low-dimensional non-negative decomposi-
tions of spectrograms has been an topic of increased interest in re-
cent times. Such decompositions represent spectrograms as non-
cancelling combinations of bases and are useful when the spectro-
gram of interest was generated as a sum of independent sources.
They find use in a variety of applications such as signal characteriza-
tion, denoising, signal separation etc. Most methods for computing
these decompositions have been based on variants of non-negative
matrix factorization (NMF) [1] or its statistical analogues [2].

One of the attractions of NMF-based representations is that they
provide a representation by parts, where the observed data are ex-
plained as a constructive combination of nominally unrelated parts.
However, NMF does not have any innate guarantee that the discov-
ered bases will be independent, as a result of which the discovery of
the right bases is often a result of chance, rather than method. Var-
ious modifications have therefore been proposed that impose con-
straints on the manner in which the bases are learned. Among these
are techniques represent the data as sparse combinations of bases
[3], those that decorrelate the contributions of the bases [4] or max-
imize the distance between the bases themselves [2]. None of these
actually guarantee independence between the bases, however.

The problem of learning independent bases to explain non-
negative data by construction can be formulated as a problem of
independent component analysis (ICA) of non-negative mixtures.
ICA aims to extract statistically independent components from ob-
servations through linear transformations. Given a collection of (col-
umn) vectors {v}, which we can represent jointly as a matrix V,
ICA attempts to estimate an “unmixing” matrix M such that the
the rows of H = MV, i.e. the components of the vectors h that

form the columns of H are statistically independent. If the vectors
v were themselves obtained through a linear operation on indepen-
dent sources, i.e. if V = WX, where X is a matrix composed of
vectors x with statistically independent components, then M will be
a scaling and permutation of the inverse of the original matrix W,
i.e. M ≈ RW−1, where R is a scaling and permutation matrix,
and H ≈ RX. Alternately stated, the components of the observed
vectors v are said to be mixtures of the original independent random
variables represented in x, where W is the mixing matrix that mixes
the components of x. ICA as it is normally performed [5, 6] aims to
estimate an unmixing matrix M that can recover the original inde-
pendent components (to within a permutation and scaling) from the
mixed data in the observations.

The usual algorithms for ICA are agnostic to the polarity of the
data. As a result, if M is a valid unmixing matrix, then ZM is also a
solution, where Z = diag(1, 1, . . . ,−1, · · · , ) is a diagonal matrix
where some diagonal terms are 1 and the rest are −1. When both
the original data X and their mixed observations V are known a pri-
ori to be strictly non-negative then the solutions obtained may not
be satisfactory, since H is not guaranteed to be non-negative. Ex-
ploiting nonnegativity constraint for both the signal and the mixing
matrix can improve signal recovery in the presence of noise.

In [7] Plumbley presents a “non-negative ICA” algorithm that re-
covers non-negative independent components from mixtures of non-
negative sources. Given a mixture of independent well-grounded
sources V, it can derive an unmixing matrix M such that the en-
tries of MV are strictly non negative and its rows are independent.
This solution however remains unsatisfactory for many reasons. The
columns of the mixing matrix in the standard formalism (V = WH)
represent the bases we referred to earlier in this section. The algo-
rithm of [7] does not guarantee non-negativity of the mixing matrix.
Secondly, there is a strong requirement for grounding, which im-
plies that each basis has a non-zero probability of not being present
(having 0 weight) in any vector v. A DC bias is common in most
naturally occurring data, which will make them ungrounded.

In [8] we presented an alternate mechanism that addressed at
least one of these issues. We recast the problem of deriving indepen-
dent non-negative bases for non-negative data as a regularized NMF
based on the observation that if a mixed non-negative matrix can
be expressed as the product of two non-negative matrices such that
the rows of the one of them are decorrelated and grounded, then the
rows of that matrix are also independent. In other words, if we were
to simultaneously estimate a non-negative mixing matrix W and a
matrix of non-negative uncorrelated vectors H such that V = WH
and H is grounded, the rows of H will also be independent.

Although the algorithm was shown to be effective, it still re-
tained one of the deficiencies from [7] – the rows of H were required
to be grounded. Thus, the algorithm was still unable to deal with data
that had a DC offset.



In this paper we extend our algorithm to explicitly account for
un-grounded data. It can be proved theoretically that independent
components W can be derived for ungrounded data in the same
manner as in [8] by shifting V to lie close to the origin, such
that W+Vinf remains non-negative. Based on this theorem we de-
velop a NMF-based algorithm for deriving independent components
from generic non-negative data that has no restrictions of ground-
ing. Maintaining the nomenclature of [8] we refer to this algorithm
as ”Ungrounded Independent Non-Negative Factor Analysis” or U-
INFA.

Simulations show that U-INFA is able to estimate mixing ma-
trices accurately, and results in estimates of unmixed independent
components that are comparable (in terms of SNR) to or better than
those obtained by other ICA algorithms, particularly in the presence
of noise. When the data are not grounded, U-INFA is able to per-
form while other previous non-negative ICA algorithms fail. Fur-
ther, when the mixing matrix W is not square (and has more rows
than the number of independent sources) we achieve superior results
to other ICA techniques in cases with significant additive noise.

2. UNCORRELATED GROUNDED NMF AS
NON-NEGATIVE ICA

Before presenting the actual algorithm, we present two theorems that
form the basis for the development of our algorithm. We briefly
present an intuitive explanation for the theorems; the actual proofs
(which will not fit in this paper) can be found in [9].

Theorem 1. Let V = (V1, ..., Vn)
T be a vector of n real-valued,

non-negative random variables Vi, which is obtained as the product
V = ZU of a non-negative real-valued matrix Z and a vector U =
(U1, ..., Un)

T of n non-negative, real valued, well-grounded and
independent random variables Ui. Further, assume that V can be
also expressed as the product V = WH, where W is an invertible,
non-negative and real-valued matrix and H = (H1, ..., Hn)

T is
a vector of n non-negative, real-valued and uncorrelated random
variables Hi.

Then the components of H can be expressed as a non-negative,
generalized permutation of the components of U and are also inde-
pendent.

The intuition behind the proof of Theorem 1 is as follows: let
V is obtained by non-negative transformation W of some matrix H
such that the rows of H are independent and grounded, then it can
be shown that it is not possible to find some other matrix H′ with
uncorrelated, but dependent rows that could also be transformed by
a non-negative matrix W′ into V. For H′ to exist, WH = W′H′,
i.e. W′+WH = H′, where W′+ is the pseudo inverse of W′.
However any transformation W′+W will necessarily rotate H such
that at least some components become negative, thereby contradict-
ing the hypothesis that H′ = W′+WH is non-negative, unless W′

is a permutation (and scaling) of W.

Theorem 2. Let Ṽ = (Ṽ1, ..., Ṽm)T be a vector of m real-valued,
non-negative random variables Ṽi, which is obtained as the prod-
uct Ṽ = ZŨ of a non-negative real-valued m × n matrix Z
and a vector Ũ = (Ũ1, ..., Ũn)

T of n non-negative, real valued
and independent random variables Ũi. Define the vector Ṽinf by
Ṽinf := (Ṽinf,1, ..., Ṽinf,m)T . Further assume that V := Ṽ − Ṽinf

can be expressed as the product V = WH, where W is a non-
negative and real-valued m × n matrix with rank(W) = n and
H = (H1, ..., Hn)

T is a vector of n non-negative, real-valued and

uncorrelated random variables Hi.
Then there exists a non-negative, generalized permutation ma-

trix P such that H = PU, where U := Ũ − Ũinf with Ũinf =

(Ũinf,1, ..., Ũinf,n)
T Particularly, the components of H are indepen-

dent. Further, the product PŨ can be computed by PŨ = H +
W+Ṽinf, where W+ is the pseudo inverse of W.

Here the subscript “inf” represents the infimum. The proof for
Theorem 2. actually follows directly from the fact that if the rows of
H are independent, Vinf = WHinf.

3. THE UNGROUNDED INFA ALGORITHM

The import of the two theorems in Section 2 is that in order to derive
non-negative independent factors from a matrix V, it is sufficient to
obtain the non-negative factorization V −Vinf = WH, subject to
the constraint that the rows of H are uncorrelated and H+ is non-
negative. This means that after a preprocessing step to “artificially”
ground the observations, we can apply our previous INFA algorithm
[8] to these preprocessed observations.

Starting from ungrounded observations Ṽ, the first step is thus
to generate artificially grounded observations V = Ṽ − Ṽinf using
the element-wise minimums of the ungrounded observations. We
then apply the INFA algorithm, which we review below, to these
artificially grounded observations.

We seek W and H such that

V = WH

Wab ≥ 0 ∀ a, b
Hbc ≥ 0 ∀ b, c
Vac ≥ 0 ∀ a, c

P (HicHjc) = P (Hic)P (Hjc) ∀ i, j, c (1)

where Wab and Hbc are components of W and H respectively. The
fifth condition in Equation 1 expresses independence of the rows of
H. We solve the above as a problem of regularized non-negative
matrix factorization. The general form of the NMF update with reg-
ularization on H from [10] is:

Wab ← Wab
[VHT]ab

[WHHT]ab

Hbc ← Hbc

[
[WTV]bc − αφ(Hbc)

]
ε

[WTWH]bc + ε
(2)

where ε is a small positive constant and [ ]ε indicates that any values
within the brackets less than ε should be replaced with ε to prevent
violations of the nonnegativity constraint. φ(H) is the gradient of
J(H) with respect to H .

For our problem,

φ(Hbc) =
∂J(H)

∂Hbc
(3)

=
∑
i

∑
j

Cij
∂Cij

∂Hbc
(4)

It is the straightforward to show that ∂Cij/∂Hbc has the form:

∂Cij

∂Hbc
=

Bij(∂Aij/∂Hbc)−Aij(∂Bij/∂Hbc)

B2
ij

(5)



where we define intermediate variables A and B as follows for no-
tational convenience:

A = HHT (6)
B = nnT (7)

nb = ||Hb|| (8)

∂Aij/∂Hbc = 1bH
T
c +Hc1

T
b (9)

∂Bij/∂Hbc = Hbc(U1b1
T
b + 1b1

T
bU

T) (10)

U = n(n−1)T (11)

where 1b is an indicator vector that is zero everywhere except for
having the bth element equal to one. n is a vector whose elements
are the norms of the rows of H, and U is an outer product of n with
its element-wise inverse. For further details and justification of this
core INFA algorithm, see [8].

After iterating the core INFA algorithm to convergence, we must
then undo the preprocessing that was done to artificially ground the
sources. We do this as described above by defining the ungrounded
signal reconstruction H̃ = H+W+Ṽinf.

The ungrounded INFA algorithm thus consists of a preprocess-
ing stage which grounds the observations, the application of the
INFA algorithm, and then a postprocessing stage to recover the un-
grounded sources.

4. RELATION TO OTHER METHODS

In contrast to UINFA or INFA, NMF by itself is not guaranteed to
recover independent signals; any such recovery is purely incidental.
The decorrelating regularization term is critical for independence.

Decorrelation in itself does not work as an independence cri-
terion for ICA, and most ICA algorithms actually attempt to ma-
nipulate higher-order moments of the data either directly or indi-
rectly to achieve independence in the unmixed outcome. Under some
conditions, however, decorrelation can directly result in indepen-
dence. Fancourt and Parra [4] have previously employed decorre-
lation as an independence criterion for nonstationary (although not
non-negative) signals where they seek a solution that decorrelates the
reconstructed sources at multiple points in time. Oja and Plumbley
[11] also use decorrelation (without enforcing higher order indepen-
dence) as part of their nonnegative ICA algorithm. They prove that
this decorrelation criterion is sufficient for use as an independence
criterion for nonnegative ICA as long as the source PDFs are “well-
grounded”. The key contrast between our work and these prior ap-
proaches is that we aim to estimate the mixing matrix, whereas prior
methods have invariably attempted to estimate the unmixing matrix.
We will show in our results that our approach yields better results in
the noisy, overdetermined case.

Additional distinctions exist with respect to prior algorithms for
ICA of non-negative data. In contrast to Plumbley’s approach which
only ensures that H is non-negative, and requires it to be “well-
grounded”, our approach ensures that both W and H are nonneg-
ative and does not require H to be grounded. For some applications,
this may be an important distinction. On the other hand, Plumbley’s
approach leads to a problem with no local minima, whereas our algo-
rithm, like all NMF formulations, is guaranteed only to find a local
minimum. The two constraints of decorrelation and nonnegativity
will only be achieved when a perfect decomposition V = WH is
found. For locally optimal solutions the decorrelation may not be
complete, from which it follows that H will not be truly indepen-
dent.
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Fig. 1. Output SIR vs. offset for a square mixing matrix in the
presence of additive noise with an input SNR of 19 dB. (no = ns =
3). Solid lines show average performance. Dashed lines show the
worst SNR out of the three recovered sources.

Nevertheless, we believe that our algorithm is useful because
it can deal with non-square mixing matrices. We are not aware of
an extension to Plumbley’s approach to non-square matrices. We
will show in the following section that in noisy conditions with
non-square mixing matrices, our algorithm can outperform other ap-
proaches.

5. RESULTS

We test our algorithm on a simple synthetic problem against three
related algorithms. The three methods are unregularized NMF
(“NMF”), i.e. Equation 2 with α = 0, FastICA [5] (“FastICA”),
a popular ICA implementation (that does not include a nonnegativ-
ity constraint), and Oja and Plumbley’s nonnegative ICA algorithm
from [11] (“Nneg ICA”). For INFA and Plumbley’s algorithm, we
implement both the basic algorithm, which assume grounded data
(“INFA” and “Nneg ICA,” respectively), as well as ungrounded ver-
sions that incorporate the pre- and post-processing described above
to handle ungrounded data (“U-INFA” and “U-Nneg ICA,” respec-
tively). The same pre- and post-processing that we describe for use
in U-INFA can also be used with Plumbley’s algorithm.

For the tests we generate synthetic observations Y by Y =
[MX + Z]ε, where the elements of M are independently chosen
from a uniform distribution on [0, 1] and the elements of X are in-
dependently chosen from a uniform distribution on [q, 1+ q], where
q is the “offset.” For example, when q = 0, the distribution is on
[0, 1], i.e. the well-grounded case. Larger values of q lead to more
and more ungrounded data. Z is IID Gaussian noise. We take as
a baseline a problem with 500 samples of a 3-dimensional source
and additive noise with a 19 dB input SNR, i.e. X is 3 × 500, and
we vary the observation dimensionality and offset. We define “input
SNR” to be the power ratio between MX and Z, the ratio of the
mixed source power to the additive noise power. For INFA, U-INFA
and for standard NMF, we initialize the entries of W and H with
uniform random values from [0, 1].

Figure 1 shows results for a square (3 × 3) mixing matrix, and
Figure 2 shows results for a 6 × 3 mixing matrix, resulting in twice
as many observations as sources. Both figures show output SIR as
offset is varied. “Output SIR” refers to the signal-to-interferer ratio
(SIR), the ratio between the recovered source power and the residual
power from other source channels remaining in the reconstruction.
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Fig. 2. Output SIR vs. offset for a mixing matrix with twice as
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an input SNR of 19 dB. (no = 6, ns = 3). Solid lines show average
performance. Dashed lines show the worst SNR out of the three
recovered sources.

In each figure, solid lines represent mean SIR and dashed lines repre-
sent the minimum (worst) SIR of the three recovered sources. This
minimum SIR is important because we often want reasonable re-
constructions of all sources rather than very good reconstructions of
some sources and very poor reconstructions of others. Each point in
the figures is an average value over 100 realizations of the problem.

In general, we do not expect unregularized NMF (“NMF” in the
results tables) to perform particularly well because it incorporates
no independence constraint. It can be expected to achieve low recon-
struction error, i.e. WH ≈ Y , but the rows of H will not necessarily
be a permutation of the rows of Y . Our results in general show that
source reconstruction by NMF is poor.

Figure 1 shows that for the square mixing matrix and zero off-
set, all methods perform reasonably well except for plain NMF.
However, as the offset is increased, the performance of INFA and
Nneg ICA degrades. U-INFA and U-Nneg ICA maintain their per-
formance in the presence of large offsets.

For the non-square (extra observations) case in Figure 2, U-
INFA performs best in all but the zero-offset case. We are unaware
of an extension of Oja and Plumbley’s nonnegative ICA algorithm
to handle non-square matrices, so instead we use only the first 3 ob-
servations as a square mixing problem. For this reason, nonnegative
ICA performance is comparable in the two figures. Other than the
fact that the number of sources was specified, FastICA was used with
its default parameters. Note in particular that U-INFA has much bet-
ter minimum output SIR performance than any other algorithm. As
in the square mixing case, the performance of INFA and Nneg ICA
degrades with increasing offset, while the performance of U-INFA
and U-Nneg ICA does not.

We believe this scenario in which there are many noisy mea-
surements of a relatively small number of independent sources is
an important one, for example when a spectrogram with hundreds
of frequency bins can be described using a relatively small number
of basis functions. In our previous work, we have encountered this
scenario while applying NMF-based techniques to speech denoising
[12]. In future work, we hope to combine INFA with the regulariza-
tion techniques in [12] and apply it to denoising and source separa-
tion of speech and other nonstationary signals.

6. CONCLUSION

We have presented an NMF-based algorithm for independent com-
ponent analysis of ungrounded non-negative data. In contrast to pre-
vious methods, we estimate a mixing matrix, rather than an unmix-
ing matrix. In contrast to previous work on nonnegative ICA, we do
not require that signals be grounded. Experiments show that in the
presence of additive noise, we are able to achieve unmixing compa-
rable to other methods of ICA for square mixing matrices, and sig-
nificantly better when the mixing matrix is not square. Additionally,
unlike other approaches, the U-INFA’s performance is not impaired
by ungrounded sources.
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