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Abstract

Approximate Nearest Neighbor (ANN) methods such as Locality Sensitive Hashing, Semantic
Hashing, and Spectral Hashing, provide computationally efficient procedures for finding objects
similar to a query object in large datasets. These methods have been successfully applied to
search web-scale datasets that can contain millions of images. Unfortunately, the key assumption
in these procedures is that objects in the dataset lie in a Euclidean space. This assumption is not
always valid and poses a challenge for several vision applications where data commonly lies
in complex non-Euclidean manifolds. In particular, dynamic data such as human activities are
commonly represented as distributions over bags of video words as a dynamical systems. In this
paper, we propose two new algorithms that extend Spectral Hashing to non-Euclidean spaces.
The first method considers the Riemannian geometry of the manifold and performs Spectral
Hashing in the Tangent space of the manifold at several points. The second method divides
the data into subsets and takes advantage of the kernel trick to perform non-Euclidean Spectral
Hashing. For a data set of N samples the proposed methods are able to retrieve similar objects
in as low as O (K) time complexity, where K is the number of clusters in the data. Since K
much-less-than N, our methods are extremely efficient. We test and evaluate our methods on
synthetic data generated from the Unit Hypersphere and the Grassmann Manifold. Finally, we
show promising results on a human action database.
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Abstract. Approximate Nearest Neighbor (ANN) methods such as Lo-
cality Sensitive Hashing, Semantic Hashing, and Spectral Hashing, provide
computationally efficient procedures for finding objects similar to a query
object in large datasets. These methods have been successfully applied
to search web-scale datasets that can contain millions of images. Unfor-
tunately, the key assumption in these procedures is that objects in the
dataset lie in a Euclidean space. This assumption is not always valid
and poses a challenge for several computer vision applications where
data commonly lies in complex non-Euclidean manifolds. In particular,
dynamic data such as human activities are commonly represented as
distributions over bags of video words or as dynamical systems. In this
paper, we propose two new algorithms that extend Spectral Hashing to
non-Euclidean spaces. The first method considers the Riemannian geome-
try of the manifold and performs Spectral Hashing in the tangent space of
the manifold at several points. The second method divides the data into
subsets and takes advantage of the kernel trick to perform non-Euclidean
Spectral Hashing. For a data set of N samples the proposed methods are
able to retrieve similar objects in as low as O(K) time complexity, where
K is the number of clusters in the data. Since K � N , our methods
are extremely efficient. We test and evaluate our methods on synthetic
data generated from the Unit Hypersphere and the Grassmann Manifold.
Finally, we show promising results on a human action database.
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1 Introduction

Human action analysis is considered one of the most important problems in
computer vision. It enables such applications as automatic surveillance, behavior
analysis, elderly care, etc. There has been a tremendous amount of work towards
automatic analysis of human motion in videos. However, due to extensive amount
of computation required for video analysis, this work by necessity is often re-
stricted to smaller models and datasets. In a real-life surveillance scenario video
data is continuously recorded for a long period of time and saved for later analysis.
Search in such extensive volumes of data remains a difficult task. Toward this
goal, this paper proposes a major step in developing hashing techniques upon
which sophisticated and efficient searches for a nearest neighbor in large corpora
of video data can be built. It is often the case when classifying complex data,
that using sophisticated features makes even a simple NN technique perform very
well. Sampling from a neighborhood, commonly used in tracking applications,
can also benefit from efficiency of hashing-based NN search. In this work we
present two methods that have a goal of replicating the Nearest Neighbor search
to make it applicable to very large datasets of complex features.
Prior work. Recently, there has been a surge in interest in fast content-based
image retrieval from web-scale databases of tens of millions of images. However
there has been little work in the same direction for videos. In this section we give a
summary of notable work dominant in the field. Karpenko et. al. in [1] introduced
a method where all the videos in a dataset were compressed to very small frame
sizes and only a few key-frames. Using intensity statistics in the frames, the
comparison of the new query is performed with the entire dataset. This technique
leads to faster video comparison, but doesn’t use semantically meaningful features
and cannot be performed faster than O(N). Biswas et. al. [2] provided a method
that used two-level hash tables based on the invariant geometric properties
of object shapes for efficient search and retrieval. Turaga et. al. [3] proposed
a dynamical-systems based model for human activities that can be used for
clustering different types of activities in a continuous video. Sidenbladh et. al. [4]
used an approximate probabilistic tree search to find the closest match in the
database for a query motion. Ben-Arie et. al. in [5] used a sparsely sampled
sequence of body poses and velocity vectors of body parts as they move in a scene
to construct multi-dimensional hash tables. For a test video, these features were
extracted and the key was used to find the match in the hash-tables. Several other
methods proposed in [6–8] cluster features derived from motion and appearance
information for semantic retrieval.

All of these methods either use exact-match hashing, which generally has
difficulties in performing a neighborhood search, or tree-based approaches, which
often help increase performance, but are not as fast as hashing techniques.

Recently, new hashing algorithms that preserve neighborhood relationship
between derived codes have been developed. Approximate Nearest-Neighbor
methods such as the variants of Locality Sensitive Hashing (LSH), [9], Semantic
Hashing, [10], and Spectral Hashing, [11], provide efficient algorithms for con-
structing binary codes for points in a high dimensional space. These methods
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have the property that codes for points that are nearby in the high-dimensional
space are also close to each other in the binary code space under the Hamming
distance. This provides an excellent method for creating hash tables because
even if the key for a query object is not in the table, the keys for neighbors in the
Hamming space can then be checked by simply flipping a bit of the binary code.

One important limitation of all the above methods is that they are only
applicable to data that resides in a Euclidean space. However, features frequently
used for activity analysis in dynamic data have strong non-Euclidean character.
For instance, histograms created as part of a bags of video words classification
procedure on local features proposed by Laptev, [12] and Dollar, [13], or dynamical
systems proposed in [14–17], naturally lie on a non-trivial manifold that has
strong non-Euclidean properties. Hence the above methods are not directly
applicable. The authors in [11] mentioned this limitation of Spectral Hashing
and assumed that a suitable Euclidean embedding can be used. However, finding
such an embedding is not always possible. A workaround for LSH that uses the
kernel trick to implicitly embed the data in a high-dimensional Euclidean space
is proposed by Kulis and Grauman [18]. Further, Kulis and Darrell in [19] use a
similar kernel trick for Spectral Hashing. However as we will explain later, this
method is no faster than performing exact nearest neighbor search.

As shown in [11], LSH usually gives very large codewords, whereas Semantic
Hashing and Spectral Hashing give compact binary codewords and therefore are
more useful for mapping objects directly to memory addresses in a computer. In
this paper, we turn our attention to Spectral Hashing and propose two new fast
approximate methods for performing Spectral Hashing on non-Euclidean data.
In section 2 we summarize standard Euclidean spectral hashing and formulate
the exact problem for non-Euclidean data. In section 3, we explain our proposed
methods and their complexity. In section 4 we test our algorithm on both synthetic
and real data sets; and give future directions of research in section 5.

2 Spectral Hashing

As presented by Weiss et. al in [11], given data points, {xi}Ni=1 ∈ Rd, the goal is
to find k-bit binary vectors, {yi}Ni=1 ∈ {−1, 1}k such that similar points in RN ,
under the similarity measure, Wij = exp(−‖xi−xj‖2

ε2 ) map to binary vectors that
are close to each other under the Hamming distance weighted by W .

If we assume that the data, xi ∈ Rd, is sampled from a probability distribution
p(x), Spectral Hashing (SH) solves the following optimization problem:

minimize
∫
‖y(x1)− y(x2)‖2W (x1,x2)p(x1)p(x2)dx1dx2 (1)

s.t. y(x) ∈ {−1, 1}k,
∫
y(x)p(x)dx = 0, and

∫
y(x)y(x)>p(x)dx = I

Relaxing the first constraint gives the solution of the problem, y as the first k
eigenfunctions of the weighted Laplace-Beltrami operator on the manifold. If p is
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the multi-dimensional uniform distribution on a subset of Rd and the weighting
function, W , is defined as above, there exists a one-shot closed form solution
for these eigenfunctions. However, in the case of a Gaussian distribution on Rd,
there exists an iterative solution.

Spectral hashing has a very appealing mathematical formulation. Ideally, one
could take any probability distribution on a general manifold and a weighting
function and analytically compute the eigenfunctions of the corresponding Laplace-
Beltrami operator. However, even in the simpler case of Euclidean data, a closed
form solution might not exist. Thus, analysis of non-Euclidean data may require
solving this problem numerically. Furthermore, the weighting function, W , is
computed from geodesic distances and thus, is no longer a simple exponential
similarity. This makes the exact computation of the solution of the minimization
problem in Eq. (1) computationally intractable.

(a) Spectral Hashing
(SH)[11]

(b) Riemannian Spectral
Hashing (RSH)

(c) Distributed Kernel Spec-
tral Hashing (DKSH)

Fig. 1. Schematic diagram of state-of-the-art and proposed hashing methods

Kulis et. al. [19] proposed using Kernel PCA instead of PCA in the SH
algorithm [11] to compute the eigenfunctions. We will refer to this method as
Kernel Spectral Hashing (KSH). Even though their method is theoretically correct,
as the kernels would embed the points in a high-dimensional Euclidean space,
finding the value of the eigenfunction at each new test datapoint would involve
computing the kernel of the test point with all the points in the training set used
to compute the kernel PCA components. Because of this, even though a well-
chosen kernel might give fine retrieval accuracy, the computational complexity of
this method is at least O(N).

3 Non-Euclidean Spectral Hashing

Noting the difficulty with applying Spectral Hashing techniques to non-Euclidean
manifolds, we propose two new methods for finding compact binary codes for
data lying on such manifolds with which this difficulty can be circumvented.
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3.1 Riemannian Spectral Hashing

Since it is hard to compute closed form eigenfunctions in the SH algorithm for
non-Euclidean data, we can embed the data in a Euclidean space. Then, under the
assumption that it is drawn from a uniform distribution in that space, spectral
hashing can be applied in this embedding space. Our first method, Riemannian
Spectral Hashing (RSH), follows this strategy.

The tangent space, TyM, to a manifold, M at a point y is a Euclidean
space. Therefore, assuming that the manifold is geodesically complete, the data,
{xi}Ni=1, can be projected onto the tangent space at y by using the logarithm
map, ∆i = −→yxi = logy(xi). This makes it possible to perform Spectral Hashing
on the tangent space projections, {∆i}Ni=1 locally, around y without introducing
significant projection error. In order to minimize projection errors the RSH
algrorithm approximates a manifold with a set of tangent hyperplanes, positioned
on a set of representative points (poles) which follow the distribution of the data
on the manifold. The poles are found by clustering, for which we can use any
extrinsic manifold clustering algorithm such as [20], [21] to cluster the data on
the manifold into K clusters. We use the Riemannian k-means procedure:

1. Initialize cluster centers, {cj}Kj=1 by randomly choosing K points from the
training data.

2. For each point xi in the data set, compute the geodesic distance to each
cluster center, d(cj ,xi) = ‖ logcj

(xi)‖. Assign the cluster center that is the
closest to the data point as the cluster membership, wi = argminj‖ logcj

(xi)‖.
3. Recompute each cluster center as the Karcher mean of the points in each

cluster, cj = mean{xl|wl = j}. This requires repeated uses of the exponential
map and the logarithm map on the manifold until convergence to a mean.

4. Repeat until convergence.

This clustering algorithm is a simple extension of the k-means algorithm to a
single geodesically complete manifold under the assumption that no two points in
the same cluster are antipodes. This method inherits the convergence properties
of regular Euclidean k-means. Once the clusters, {cj}Kj=1, and memberships,
{wi}Ni=1, have been assigned, all the points in the same cluster are projected to
the tangent space around the cluster center using the corresponding logarithm
maps. A separate spectral hashing algorithm is then trained on each tangent
space.

For computing the binary code of a new test point, z, we first compute
the geodesic distance of z with all the cluster centers and project it to the
tangent space of the closest cluster center, ck, where k = arg minj ‖−→cjz‖ to get
∆z = logck

(z) . We then use spectral hashing to find the binary code of ∆z. Since
finding the right cluster center, only requires K geodesic distance evaluations, this
results in a computational cost of O(K). Even though this is greater than O(1)
as in Spectral Hashing, it is much less than O(N) as in Kernel Spectral Hashing,
where K � N . Moreover, by clustering all the data, we better approximate
the uniform distribution assumption in each cluster. We summarize RSH in
Algorithm 1. Figure 1(b) provides an illustration of the method.
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Alg. 1: Riemannian Spectral Hashing
Training

1. Cluster training data using a manifold clustering algorithm, [20], [21].

2. Compute log-maps and project each cluster to the tangent space around center.

3. Train spectral hashing on points in each tangent space separately.

Testing

1. Find closest cluster center using geodesic distances on the manifold.

2. Project onto tangent space around closest cluster center.

3. Compute binary code of the projected point using Spectral Hashing.

4. Retrieve the nearest neighbor.

3.2 Distributed Kernel Spectral Hashing (DKSH)

In certain cases, closed form experssions for the logarithm and exponential maps
for manifolds are not available. This limits the applicability of extrinsic manifold
clustering algorithms as required in Alg. 1. If however, a kernel or other affinity
measure, W (., .) is defined on the manifold, a non-linear dimensionality reduction
method such as Multidimensional Scaling (MDS) [22] can be employed to project
the data into a low-dimensional Euclidean space before performing k-means on
this low-dimensional space. Alternatively, a non-linear clustering algorithm such
as kernel k-means [23] or Spectral Clustering [24] can be used to compute cluster
associations of the data. As a result, we would not have cluster centers but
only cluster associations for the training data. After the clustering stage, one
representative point is chosen in each cluster to represent all data within it. One
method to choose this point is as follows [25]:

1. Compute the N × N affinitiy matrix, W , of the training data based on a
kernel or affinity defined on the manifold.

2. Perform MDS using W to get a low-dimensional Euclidean representation
{ui}Ni=1 and perform k-means on these points to get K cluster centers {vj}Kj=1

in the low-dimensional space.
3. Within each cluster center, choose the point u in the projected data that is

closest to each cluster center vj .
4. Find the original points {xp;j}Kj=1 on the manifold that mapped to the points
{vj}Kj=1 after MDS and use these points as cluster representatives (pivots).

Once a representative, or pivot, for each cluster has been computed, we train
Kernel Spectral Hashing (KSH) separately for each cluster.

As in RSH, to find the binary code for a test point, z, we first compute its
affinity, W (xp;j , z) with each pivot point and assign z to the j-th cluster if xp;j
has the highest affinity with z. We then use Kernel Spectral Hashing trained for
that specific cluster and compute the binary code for z to retrieve the nearest
neighbors. Assuming that in the best case, all the points are equally divided
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between K clusters, the query time complexity of this method is O(K +N/K)
on average, which is more computationally expensive that RSH. However, it is
still significantly better than the complexity of KSH. In the worst case when only
1 cluster is chosen, the complexity is O(N), the same as KSH. We summarize
DKSH in Algorithm 2. Figure 1(c) provides an illustration of the method.

Alg. 2: Distributed Kernel Spectral Hashing
Training

1. Cluster training data using Non-Linear clustering (MDS, Spectral clustering etc.)
using kernel similarity

2. Pick a pivot point, representing each cluster.

3. Train Kernel Spectral Hashing on points in each cluster separately.

Testing

1. Use kernel similarity to compute pivot with the highest affinity to test point.

2. Compute binary code with kernel spectral hashing for that pivot.

3. Retrieve the nearest neighbor.

4 Experiments

In this section we compare the proposed methods, Riemannian Spectral Hashing
(RSH) and Distributed Kernel Spectral Hashing (DKSH), against exact Nearest
Neihbors (NN), and state-of-the-art Hashing methods: Kernel Locality Sensitive
Hashing (KLSH) [18], Euclidean Spectral Hashing [11] (SH), and Kernel Spectral
Hashing [19] (KSH).

4.1 Synthetic data

We first test the proposed methods on synthetic datasets of points lying on two
non-Euclidean manifolds: the 100 dimensional unit hypersphere, S99, and the
manifold of all 3-dimensional subspaces of R10, i.e., the Grassmann manifold,
G10,3 or G3,10−3. The evaluation is performed on an 8-core Intel Xeon 3.4 GHz
machine with 32 GB of RAM. In each experiment, we restrict the number of
processing cores to exactly one so that the run-times of various algorithms are
comparable. When comparing our methods with Spectral Hashing, we treat
the points on both the above mentioned manifolds as points in R100 and R30

respectively.
As a technical detail, it is noted that when the data size grows larger than

104 samples, the memory requirements of the PCA computation in SH and the
kernel PCA in KSH become extremely large and can not be handled by our
computational resources. As an example, consider computing the all pair kernel
matrix for 105 points. Storing the result as a double precision matrix in memory
requires a minimum of (105)2 × 8 = 72 GB of memory, which is not available in
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our system. Therefore for datasets larger than 104 points, we randomly sample
1000 points, equally sampling from each class, and pre-train all the hashing
algorithms on this smaller set. We then compute the binary hash codes for all
the training points and store them for comparison against the test sets. Since
the number of exponential and logarithm map evaluations as well as kernel
evaluations will decrease, we will distinguish the training and testing times for
the hashing methods where all the data was used for training ( 10− 104 samples),
and for methods where a pre-training approach was used, (105, 106 samples).
Unit hypersphere - S99. The unit hypersphere, S99, is the set of all points,
x ∈ R100 that satisfy the constraint,

∑100
i=1 x

2
i = 1. The geodesic distance between

two points, x and y, on a hypersphere is defined as dG(x,y) = cos−1(x>y).
Moreover, the logarithm and exponential maps on the sphere are defined as,

logx(y) =
y − (x>y)x
‖y − (x>y)x‖

cos−1(x>y),

expx(∆) = cos(‖∆‖)x + sin(‖∆‖) ∆

‖∆‖
,

where ∆ is a tangent vector at the pole x. Finally, the standard inner product
also defines a kernel on the sphere, i.e. k(x,y) = x>y.

We generate 5 sets of 5-class each training datasets containing 100, 1000, 104,
105 and 106 points on S99. For testing, we generate 100 more points in each case.
Figure 2 displays the difference between the recognition percentages of exact
1-NN and the state-of-the-art methods (Kernel LSH (KLSH), SH and KSH) and
the proposed hashing algorithms (RSH and DKSH). We use 8 bits for all hashing
algorithms and 5 clusters for the proposed methods. Both RSH and DKSH have
the lowest percentage difference compared to the state-of-the-art methods for
all training sizes. Moreover, the error percentages remain within 10-15% of the
exact 1-NN method. This can clearly be attributed to the fact that the proposed
methods specifically take into account the manifold structure of the space and
thus result in better recognition performance.

Table 1 shows the training times required for each algorithm against the
number of training samples. 1-NN does not require any training, whereas SH
and RSH are the fastest to train. The training times for KLSH, KSH and DKSH
increase greatly with the number of training samples. Table 2 provides the total
test time for 100 samples. Coupled with higher accuracy, this is where we observe
the real advantage of the proposed methods. As the size of the training data
increases, not surprisingly, the time taken for 1-NN also increases. All test times
for SH and KSH remain low but are still higher than the test times for RSH and
DKSH. This again illustrates the superiority of the proposed methods.

Finally, Figure 4 displays the dependence of the error rate of RSH on the
algorithm parameters, i.e., the number of bits and the number of clusters. We
can see that if the number of bits is kept constant, increasing the number of
cluster centers decreases the testing error rate. Similarly, keeping the number of
clusters constant, and increasing the number of bits also decreases the testing
error rate. The first quality is highly desirable, since in a real scenario, the binary
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Fig. 2. S99 - Comparison of NN and ANN
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code will represent the memory location for a pointer to the data. Thus having
more than 64 bits is not practical. In fact this shows that we can use relatively
fewer number of bits and pack the data points in memory by using more clusters.
Since the clusters can be located arbitrarily in memory, this reduces the need for
large chunks of contiguous memory.

Grassmann manifold - G10,3. In an analogous fashion to the previous section,
we generate several training samples of different sizes on the Grassmann manifold,
G10,3, which is the manifold of all the 3-dimensional subspaces of R10. The
data lies in 5 classes and is generated using the method in [26]. For non-linear
clustering and tangent space to manifold projections and vice-versa, we use the
expressions for the exponential and logarithm maps on the Grassmann manifold
in [20]. For computing the kernel on the manifold we use the product of the
cosines of the subspace angles between the subspaces [27]. Again, we use 8 bits
for the binary codes for all hashing algorithms and 5 clusters for our proposed
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Table 1. S99 - Training times

Method Training time (sec)

# Training 100 1000 104 105 106

NN 0 0 0 0 0
KLSH 0.01 3.44 1.5h 85.0 11.7m
SH 0.01 0.40 56.02 46.11 6.4m
KSH 0.02 7.30 2.0h 50.7m 7.5h
RSH 0.35 1.90 33.8 70.17 8.8m
DKSH 0.08 7.62 2.0h 72.02 10.1m

Table 2. S99 - Testing times

Method Testing time (sec)

# Training 100 1000 104 105 106

NN 0.01 0.02 0.41 4.81 1.3m
KLSH 0.03 0.02 0.37 1.96 17.0
SH 0.04 0.04 0.04 0.09 1.06
KSH 0.06 3.13 4.1m 2.32 4.02
RSH 0.06 0.06 0.05 0.07 0.28
DKSH 0.06 0.07 10.09 0.07 0.25

Table 3. G10,3 - Training times

Method Training time (sec)

# Training 100 1000 104 105 106

NN 0 0 0 0 0
KLSH 0.01 5.07 1.2h 34.0m 5.5h
SH 0.01 0.08 9.60 16.63 3.9m
KSH 0.12 17.2 2.5h 1.5h 13.2h
RSH 0.56 10.52 6.1m 10.2m 16.6m
DKSH 0.17 21.27 3.2h 36m 6.3h

Table 4. G10,3 - Testing times

Method Testing time (sec)

# Training 100 1000 104 105 106

NN 2.06 21.2 3.3m 41.1m 5.7h
KLSH 0.20 2.29 22.5 4.15 23.1
SH 0.04 0.03 0.04 0.10 1.27
KSH 0.28 3.60 3.5m 4.83 5.47
RSH 0.12 0.11 0.10 0.13 1.21
DKSH 0.17 1.95 1.5m 1.16 1.88

methods. Figure 3 displays the difference between the recognition percentage of
1-NN and all other methods. At first it might seem that SH performs better than
the other methods for small data sizes, the trend is offset drastically with large
training sizes where it performs the worst. Overall, RSH performs better than all
state-of-the-art methods and the error stays within 30% of that of 1-NN.

Table 3 provides the training times for each of the training datasets. We notice
that KLSH, KSH and DKSH require the largest training times, whereas RSH and
SH require the least. For all the methods, the training time increases with the
number of data points but due to the large number of kernel computations during
the training stage, the increase in time is greatest for KLSH, KSH and DKSH.
Table 4 gives the total test time for 100 test samples for each of the training sizes.
We again see the computational advantage of the proposed methods against the
exact method as well as the state of the art KLSH and KSH methods. The test
time increases steeply with the size of the data for the kernel-based methods,
whereas the corresponding increase in test time stays low for RSH.

From the above set of experiments, we have shown that the proposed approx-
imate nearest-neighbor methods, RSH and DKSH, by explicitly considering the
manifold structure of the space of data, provide great computational advantage
against exact Nearest Neighbors while having very low to modest decrease in
accuracy. Moreover, our methods always perform better than KLSH and KSH,
the state-of-the-art non-Euclidean Hashing methods.

4.2 Human action dataset

Recent approaches in human activity recognition use features such as (1) distri-
butions over a bag of spatial-temporal keypoints to represent the activity in a
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scene, or (2) dynamical systems learnt from a time-series of features extracted
from the frames of the video. Both these features lie in non-Euclidean spaces and
therefore the proposed approach is directly applicable for the purpose of retrieving
activities from a large dataset of activity videos. Even though, human activity
analysis has been a vibrant field in computer vision, to the best of our knowledge,
no datasets are available that contain more than a few thousand instances of
human actions. Videos of unstructured scenes with multiple activities and events
are available, however, the ground-truth activity segmentation and tracking is not
provided and automatic extraction of these remains an open problem in computer
vision. One of the most popular and largest datasets available is the KTH human
action dataset [28]. This dataset contains six actions: walking, running, jogging,
boxing, handwaving and handclapping. There are 25 persons performing these
actions under four different scenarios: outdoors, outdoors across different scales,
outdoors with bulky clothes on and indoors. There are a total of 2391 sequences
in the dataset.

For our first experiment, we use the approach of [13] and extract several
spatio-temporal keypoints and their corresponding descriptors in all the videos.
We divide the data as follows: All the videos of the first 16 subjects are used for
training whereas the videos of the remaining 9 subjects are used for testing. A
k-means procedure is used to cluster the descriptors in the training data to form
a dictionary of 100 keypoints. We then learn feature distributions for each action
video around these keypoints. This provides a 100 dimensional histogram per video
that represents the action in that video. These histograms are used for training
and testing the proposed ANN methods. Note that for a fair comparison to
nearest-neighbor algorithms, we will test our method against the simple nearest-
neighbor algorithm and not against the state-of-the-art methods for human
activity recognition that use sophisticated classification algorithms to achieve
superior performance. The error rates reported below are not state-of-the-art on
the KTH human action database; instead, they are the error rates achieved when
using exact NN and state-of-the-art ANN methods and our proposed methods on
the dataset. We emphasize that our goal here is not to find the best classification
algorithm on the KTH database, but to compare the performance of the proposed
ANN methods against state-of-the-art ANN and exact NN methods.

Table 5. BOW histograms

Method Correct % Train t Test t

NN 76 0 11.5
KLSH 24 38.4 1.04
SH 51 3.4 0.45
KSH 51 41.1 81.1
RSH 62 58.6 0.39
DKSH 51 31.1 3.34

Table 6. Observability matrices

Method Correct % Train t Test t

NN 72 0 149.3
KLSH 64 0.547 35.0
SH 22 5.262 1.67
KSH 17 31.24 38.7
RSH 65 321.7 10.3
DKSH 58 266.5 15.8
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Table 5 compares the performance of the proposed methods with Nearest
Neighbors and state-of-the-art hashing methods. All the hashing methods use
8-bits for the binary codes. The proposed methods, RSH and DKSH divide
the training data into 3 clusters. The results show that RSH has the highest
recognition percentage other than exact NN, whereas the state-of-the-art KLSH
has the worst recognition percentage. Moreover, RSH is also the most efficient
method in terms of retrieval time, even though it requires the largest training
time. Furthermore, the best recognition rate achievable using RSH was 69% with
64 bit code-words and 2 clusters, which is only 7% below the error rate achieved
by exact 1-NN.

For our second experiment, we use the approach in [17] and compute the
Histogram of Oriented Optical Flow (HOOF) features at each frame to get a
normalized histogram time-series for each video. We then learn a linear-state
non-linear dynamical system (NLDS) using the approach in [17] with the Geodesic
(Bhattacharya) kernel on histograms. Hence each activity video is now repre-
sented as a non-linear dynamical system. There are several methods for comparing
dynamical systems, e.g. those proposed in [17] and the references therein. We
represent the dynamics and output transformation functions using the observ-
ability matrix for each dynamical system. Since we are using the inner-product
on the sphere as the kernel, we can simply use PCA to learn the approximate
dynamical system parameters and thus get the parameter matrices, A ∈ Rn×n
and C ∈ Rp×n. Here n is the system order, and p is the size of the output, 10 and
64, respectively, in our case. The observability matrix can then be computed as
O = [C>, (AC)>(A2C)>, . . . , (An−1C)>]> ∈ Rpn×n. See [17] and the references
therein for more details. Notice that the columns of O span an n-dimensional
subspace of Rnp and thus O lies on the Grassmann manifold, Gnp,n. We can
therefore follow the experiments in section 4.1 using these observability matrices
as the data points.

Since the approach in [17] is directly applicable only for stationary cameras,
we choose sequences from the first scenario, i.e. outdoors with stationary camera
(around 600 sequences) to test our algorithms. We use 64% of the data for training
and the remaining 36% for testing. Moreover, we use 64 bits for the binary codes
and 15 clusters/pivots for the proposed methods.

Table 6 shows the recognition percentages and training and testing times for
exact KNN using the Martin distance for dynamical systems, and the proposed
and state-of-the-art hashing methods. We can see that our method, RSH, has
the best recognition rate, slightly above KLSH. Notice that even though exact
NN does not require any training, which could be as high as 321.7 seconds for
RSH, the speed up in terms of test times is significant. Exact KNN requires 149.3
seconds for testing whereas RSH requires only 10.3 seconds and DKSH requires
15.8 seconds. Even though KLSH performs well in this scenario, due to the many
kernel computations required, its testing time is at least 3 times greater than
RSH, limiting the former’s advantage.
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5 Conclusion and Future Work

We have proposed two new methods, Riemannian Spectral Hashing (RSH), and
Distributed Kernel Spectral Hashing (DKSH), for performing fast approximate
nearest-neighbor matching on non-Euclidean data. We have shown that state-of-
the-art methods either do not take into account the manifold structure of the
data, or are computationally inefficient and can in fact be slower in performance
than exact nearest neighbors. Moreover, experiments on synthetic and real data
have shown that our methods are applicable to points that lie on simple manifolds
such as the unit hypersphere as well as to points that lie on highly complicated
manifolds such as the space of dynamical systems. The proposed methods provide
immense computational savings at the cost of a small decrease in accuracy and
hence are ideal for approximate nearest neighbor matching in large datasets.
We have provided average-case time complexity for our proposed methods and
are looking into how the parameters such as the number of bits and number of
clusters/pivots, can be set so as to achieve user-defined precision/recall tolerances.
Finally we are working on collecting a very large human action dataset to further
validate the benefits of our proposed methods.
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