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Abstract
We propose a novel solution to object detection, localization and pose estimation with ap-
plications in robot vision. The proposed method is especially applicable when the objects
of interest may not be richly textured and are immersed in heavy clutter. We show that a
multi-flash camera (MFC) provides accurate separation of depth edges and texture edges in
such scenes. Then, we reformulate the problem, as one finding matches between the depth
edges obtained in one or more MFC images to the rendered depth edges that are computed
offline using 3D CAD model of the objects. In order to facilitate accurate matching of these
binary depth edge maps, we introduce a novel cost function that respects both the position
and the local orientation of each edge pixel. This cost function is significantly superior to tra-
ditional Chamfer cost and leads to accurate matching even in heavily cluttered scenes where
traditional methods are unreliable. We present a sub-linear time algorithm to compute the
cost function using techniques from 3D distance transforms and integral images. Finally, we
also propose a multi-view based pose-refinement algorithm to improve the estimated pose.
We implemented the algorithm on an industrial robot arm and obtained location and angular
estimation accuracy of the order of 1 mm and 2 degrees respectively for a variety of parts
with minimal texture.
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Abstract— We propose a novel solution to object detection,
localization and pose estimation with applications in robot
vision. The proposed method is especially applicable when
the objects of interest may not be richly textured and are
immersed in heavy clutter. We show that a multi-flash camera
(MFC) provides accurate separation of depth edges and texture
edges in such scenes. Then, we reformulate the problem, as
one of finding matches between the depth edges obtained in
one or more MFC images to the rendered depth edges that
are computed offline using 3D CAD model of the objects. In
order to facilitate accurate matching of these binary depth edge
maps, we introduce a novel cost function that respects both
the position and the local orientation of each edge pixel. This
cost function is significantly superior to traditional Chamfer
cost and leads to accurate matching even in heavily cluttered
scenes where traditional methods are unreliable. We present a
sub-linear time algorithm to compute the cost function using
techniques from 3D distance transforms and integral images.
Finally, we also propose a multi-view based pose-refinement
algorithm to improve the estimated pose. We implemented the
algorithm on an industrial robot arm and obtained location
and angular estimation accuracy of the order of 1 mm and 2◦
respectively for a variety of parts with minimal texture.

I. INTRODUCTION

Machine vision systems that robustly identify and locate ob-
jects have a multitude of applications ranging from intelligent
homes to automatic manufacturing. Although the population
of robots has been growing fast, most robots work in
restricted and constrained environments. For example, parts
in assembly lines have to be placed with a fixed orientation
and position for robots to grasp and manipulate them. It
remains a great challenge to handle non-structured scenes
containing multiple objects. Here, we propose a machine
vision system that provides (a) robust feature extraction (b)
accurate pose estimation and (c) fast operation with minimal
lag. A multi-flash camera [13](MFC) provides accurate sep-
aration of depth edges and texture edges in heavily cluttered
environments. We then reformulate the problem of object
detection and localization, as one of finding matches between
the depth edges obtained in one or more MFC images to the
rendered (from CAD model) depth edges. We introduce a
novel cost function that respects both the position and the
local orientation of each edge pixel. This cost function is
superior to Chamfer matching cost and leads to accurate
matching even in cluttered scenes. Finally, we also perform
continuous optimization to refine the estimated pose.

A. Related Work

Model-based pose estimation using 3D model to 2D image
correspondences can be found in [11][12][5]. Unfortunately

Fig. 1: The robotic grasping platform. The MFC is mounted
on the robotic arm and the objects are placed in a container.

the 3D-2D point correspondences are hard to obtain for
industrial parts due to their textureless surfaces. The situation
is particularly severe when multiple identical objects are
placed together and overlap each other.

Object contours provide rich information about object iden-
tities and their poses. One fundamental problem in exploiting
this cue is in matching an exemplar contour to a newly
observed contour, especially when the observed contour is
partially occluded or located in a cluttered background.
Besides Chamfer matching [3], various contour matching
algorithms have been proposed in [7][2][10]. Although these
methods perform better than Chamfer matching for well
segmented objects[3], their performance in cluttered scenes
tends to be inferior (see [17]). Edge orientation can be
used in order to improve the Chamfer matching in cluttered
background as shown in [9][15][16].

Active illumination patterns can greatly assist vision al-
gorithms by extracting robust features in such challenging
environments. Examples of such techniques include depth
estimation by projecting a structured illumination pattern
[14]. In this paper, we exploit the MFC which uses active
illumination in order to extract depth edges thereby removing
the clutter from texture and shadow edges. In environments
where texture is indeed a rich source of information, we
could still use our algorithm with canny edges instead of
depth edges obtained via MFC. Since the focus of this
paper is on industrial environments where texture is not an
important visual information source, we restrict our attention
to depth edges from MFC for the rest of this paper.

Contributions: The technical contributions are

• We show that a MFC provides accurate extraction of
depth edges even in heavy clutter.

• We introduce a novel cost function that respects both the
position and the local orientation of each edge pixel and
show its superiority over traditional edge based costs.
We also develop a sub-linear time algorithm to compute
the cost function using techniques from 3D distance



Fig. 2: System Overview.

transforms and integral images.
• We propose a multi-view pose-refinement algorithm in

order to improve the pose estimate.
• We implemented the algorithm on an industrial robot

and obtained location and angular estimation accuracies
of about 1 mm and 2◦ respectively.

II.SYSTEM OVERVIEW

Physical Layout and Calibration: System design is shown
in Figure 1 where MFC is mounted to the robot arm. The
MFC is calibrated (both internal and external) using a cal-
ibration grid. Also, we performed the gripper-camera(hand-
eye) calibration so that the gripper can interact and grasp
objects. This gives us a complete calibrated framework.

Algorithmic Layout: The algorithmic layout of the system
is described below and shown in Figure 2.

1) Offline Rendering of Database: For each object (a)
render the 3D CAD model for every hypothesized pose
(b) compute the depth-edges and (c) fit lines to the
rendered MFC depth edges.

2) Feature Extraction: Capture 8 images using the 8
different flashes of the MFC. These images are then
used to compute the depth edges in the scene.

3) Object Detection and Pose Estimation: Compute the
matching cost between each rendered pose of each
object in the database and the edge map obtained using
the MFC to perform coarse pose estimation. Refine
this estimate further using a multi-view based pose-
refinement algorithm.

4) Grasping and Assembly: Once the 3D poses of the
objects are accurately estimated, grasp the objects in
order using the gripper at the end of the robot arm and
perform the required assembly task.

III.MULTI-FLASH CAMERA

An MFC is an active illumination based camera that contains
8 point light sources (LED’s) arranged in a circle around
the camera as shown in Figure 3. The MFC exploits the
change in the shadows caused by changes in illumination
source positions in order to extract depth edges even for
challenging objects such as textureless objects and mildly
specular objects. Consider the MFC shown in Figure 3. As
the different LED’s around the camera flash, the position of
the shadows cast by the object change. While points on the
object (such as P1) do not change intensity as the flash moves
around, points that are in the shadow of one of the flashes
(such as P2) change intensity significantly. This change in
intensity of the shadow pixels can be used to detect and
extract view dependent depth edges[13].

Fig. 3: Principle of operation of MFC. As the different LED’s
around the camera flash, the shadows cast by the object change.
While points on the object (such as P1) do not change intensity as
the flashes move around, points in the shadow of one of the flashes
(such as P2) change intensity. This is used to detect depth edges.

Let us denote the image captured (after ambient subtraction)
during the flashing time of the ith LED as Ii. The maximum
intensity value at each pixel location among these ambient
subtracted images are found and used to construct the max-
imum illumination image Imax(x,y) = maxi Ii(x,y). Next, we
compute the ratio images of the ambient subtracted images to
the maximum illumination image, RIi = Ii

Imax
. Ideally, the ratio

value in the shadow region (eg., point P2) should be zero
since the contribution of the illumination from the ambient
source has been removed. In contrast the ratio values in other
regions (eg., point P1) should be close to one since these
regions are illuminated by all the flashes. Notice that the
point of transition between the pixels in the shadow region
and those not in the shadow region is always a depth edge.
For each ratio image, we apply a Sobel filter designed to
detect this transition from shadow to non-shadow (0 to 1).

IV.OBJECT DETECTION AND LOCALIZATION

In this section, we present our algorithm for detection and
localization of objects in cluttered scenes using depth edges
acquired through MFC. Without loss of generality, we de-
scribe the method as applied to a single object. However, this
assumption is only for ease of presentation, while in reality
the algorithm locates and estimates the pose of multiple
objects simultaneously.

A. Database Generation

Given the CAD model of the object, we generate a database
of depth edge templates by simulating MFC in software.
In the simulation, a virtual camera having the internal
parameters of the real MFC is placed at the origin and its
optical axis is aligned with the z-axis of the world coordinate
system. Eight virtual flashes are evenly placed on a circle on
x-y plane having center at origin and radius equal to the
actual baseline between the camera and flashes. The CAD
model of the object is then placed on the z-axis at a distance
tz from the virtual camera. The virtual flashes are switched
on one at a time and eight renderings of the object (including
cast shadows) are acquired. The depth edges in the scene are
detected using the procedure described in Section III.



Fig. 4: Database generation. We uniformly sample the rotation
angles (θx and θy) on the 2-sphere. The template database is
generated by rendering the CAD model of the object with respect
to the sampled rotations.

An arbitrary 3D rotation can be decomposed into a sequence
of three elemental rotations about three orthogonal axes. We
align the first of these axes to be the camera optical axis
and call the rotation about this axis as the in-plane rotation
(θz). The other two axes are on a plane perpendicular to
the camera optical axes and the rotation about these two
axes are called the out-of-plane rotation(θx and θy). Note
that an in-plane rotation results in an in-plane rotation of
the observed images, whereas the effect of an out-of-plane
rotation depends on the 3D structure of the object. Due to
this distinction, we only include out-of-plane rotations of the
object into the database. We sample k out-of-plane rotations
(θx and θy) uniformly on the 2-sphere, S2, as shown in
Figure 4 and generate the depth edge templates for each of
these rotations.

B. Directional Chamfer Matching
During matching, we search for the database template to-
gether with its optimal 2D Euclidean transformation, s ∈
SE(2), which aligns the depth edges of the template to
the query image edges. A 2D Euclidean transformation is
represented with three parameters, s = (θz, t̄x, t̄y), where t̄x
and t̄y are the image plane translations along the x and y axes
respectively and θz is the in-plane rotation angle. Its action
on an image pixel is given as

W(x;s) =
(

cos(θz) −sin(θz)
sin(θz) cos(θz)

)
x+

(
t̄x
t̄y

)
. (1)

Chamfer matching [1] is a popular technique to find the best
alignment between two edge maps. Let U = {ui} and V =
{v j} be the sets of template and query image edge maps
respectively. The Chamfer distance between U and V is given
by the average of distances between each point ui ∈U and
its nearest edge in V

dCM(U,V ) =
1

n ∑
ui∈U

min
v j∈V

|ui −v j|. (2)

where n = |U |. The best alignment parameter ŝ ∈ SE(2)
between the two edge maps is then given by

ŝ = arg min
s∈SE(2)

dCM(W(U ;s),V ). (3)

Chamfer matching becomes less reliable in the presence of
background clutter. To improve robustness, several variants
of Chamfer matching were introduced by incorporating edge

(a) (b)

Fig. 5: Matching costs per edge point. (a) Shotten et al. [16]; (b)
Directional Chamfer matching. DCM jointly minimizes location and
orientation errors whereas in [16] the location error is augmented
with the orientation error of the nearest edge point.

orientation information into the matching cost. In [9], the
template and query image edges are quantized into discrete
orientation channels and individual matching scores across
channels are summed. Although this method alleviates the
problem of cluttered scenes, the cost function is very sen-
sitive to the number of orientation channels and becomes
discontinuous in channel boundaries. In [16], the Chamfer
distance is augmented with an additional cost for orientation
mismatch which is given by the average difference in orien-
tations between template edges and their nearest edge points
in the query image.

Instead of an explicit formulation of orientation mismatch,
we generalize the Chamfer distance to points in R

3 for
matching directional edge pixels. Each edge point x is
augmented with a direction term φ(x) and the directional
Chamfer matching (DCM) score is given by

dDCM(U,V ) =
1

n ∑
ui∈U

min
v j∈V

|ui −v j|+λ |φ(ui)−φ(v j)| (4)

where λ is a weighting factor between location and orien-
tation terms. Note that the directions φ(x) are computed
modulo π , and the orientation error gives the minimum
circular difference between the two directions

min{|φ(x1)−φ(x2)|, ||φ(x1)−φ(x2)|−π|}. (5)

In Figure 5, we present a comparison of the proposed
cost function with [16]. In [16], the nearest point in V is
initially located for a given template point u and the cost
function is augmented with the difference between their
orientations, whereas the cost function proposed in the paper
jointly minimizes the sum of location and orientation error
terms. It can be easily verified that the proposed matching
cost is a piecewise smooth function of both translation t̄x,
t̄y and rotation θz of the template edges. Therefore the
matching algorithm is more robust against clutter, missing
edges and small misalignments. To our knowledge, the best
computational complexity for the existing Chamfer matching
algorithms is linear in the number of template edge points,
even without the directional term. In the following section,
we present a sub-linear time algorithm for exact computation
of the 3D Chamfer matching score (4).

C. Search Optimization
The search problem given in (3), requires optimization
over three parameters of planar Euclidean transformation
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Fig. 6: Linear representation. (a) Edge image. The image
contains 11542 edge points. (b) Linear representation of the edge
image. The image contains 300 line segments.

(θz, t̄x, t̄y) for each of the k templates stored in the database.
Given a 640x480 query image and a database of k = 300
edge templates, the brute-force search requires more than
1010 evaluations of the cost function in (4). We perform
search optimization in two stages: (1) We present a sub-
linear time algorithm for computing the matching score; (2)
We reduce the three-dimensional search problem to one-
dimensional queries by aligning the major lines of template
images to the query image.

1) Linear Representation: The edge map of a scene does
not follow an unstructured binary pattern. Instead, the object
contours comply with certain continuity constraints which
can be retained by concatenating line segments of various
lengths, orientations and translations. Here, we represent an
edge image with a collection of m-line segments. Compared
with a set of points which has cardinality n, its linear repre-
sentation is more concise. It requires only O(m) memory to
store an edge map where m << n.

We use a variant of RANSAC [8] algorithm to compute
the linear representation of an edge map. The algorithm
initially hypothesizes a variety of lines by selecting a small
subset of points and their directions. The support of a line
is given by the set of points which satisfy the line equation
within a small residual and form a continuous structure. The
line segment with the largest support is retained and the
procedure is iterated with the reduced set until the support
becomes smaller than a few points.

The algorithm only retains points with certain structure
and support, therefore the noise is filtered. In addition,
the directions recovered using the line fitting procedure are
more precise compared with local operators such as image
gradients. An example of linear representation is given in
Figure 6 where a set of 11542 points are modeled with 300
line segments.

2) Three-Dimensional Distance Transform: The matching
score given in (4) requires finding the minimum cost match
over location and orientation terms for each template edge
point. Therefore the computational complexity of the brute-
force algorithm is quadratic in the number of template
and query image edge points. Here we present a three-
dimensional distance transform representation (DT 3) to com-
pute the matching cost in linear time.

This representation is a three dimensional image tensor
where the first two dimensions are the locations on the
image plane and the third dimension is the quantized edge
orientation. The orientations are quantized into q discrete
channels Φ̂ = {φ̂i} evenly in [0 π) range. Each element of
the tensor encodes the minimum distance to an edge point
in joint location and orientation space:

DT 3V (x,φ(x)) = min
v j∈V

|x−v j|+λ |φ̂(x)− φ̂(v j)|. (6)

where φ̂(x) is the nearest quantization level in orientation
space to φ(x) in Φ̂.

The DT 3 tensor can be computed in O(q) passes over the
image. Equation (6) can be rewritten as

DT 3V (x,φ(x)) = min
φ̂i∈Φ̂

(
DTV{φ̂i} +λ |φ̂(x)− φ̂i|

)
(7)

where DTV{φ̂i} is the two-dimensional distance transform

of the edge points in V having orientation φ̂i. Initially we
compute q two dimensional distance transforms DTV{φ̂i}
using the standard algorithm [6]. Subsequently, the DT 3V

tensor (7) is computed by solving a second dynamic program
over the orientation costs, for each location separately.

Using the 3D distance transform representation DT 3V the
directional Chamfer matching score of any template U can
be computed in linear time via

dDCM(U,V ) =
1

n ∑
ui∈U

DT 3V (ui, φ̂(ui)). (8)

3) Distance Transform Integral: Let LU = {l[s j ,e j ]} j=1...m be
the linear representation of template edge points U where
s j and e j are the start and end locations of the j-th line
respectively. For ease of notation, we sometimes refer to
a line with only its index l j = l[s j ,e j ]. We assume that the
line segments only have directions among the q discrete
channels Φ̂, which is enforced while computing the linear
representation. All the points on a line segment are associated
with the same orientation which is the direction of the line
φ̂(l j). Hence the directional Chamfer matching score (11)
can be rearranged as

dDCM(U,V ) =
1

n ∑
l j∈LU

∑
ui∈l j

DT 3V (ui, φ̂(l j)). (9)

In this formulation, the i-th orientation channel of the DT 3V

tensor, DT 3V (x, φ̂i), is only evaluated for summing over the
points of line segments having direction φ̂i.

Integral images are intermediate image representations used
for fast calculation of region sums [18]. Here we present a
tensor of integral distance transform representation (IDT 3V )
to evaluate the summation of costs over any line segment in
O(1) operations. For each orientation channel i, we compute
the one-directional integration along φ̂i (Figure 7).

Let x0 be the intersection of an image boundary with the
line passing through x and having direction φ̂i. Each entry
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Fig. 7: Computation of the integral distance transform tensor.
(a) The input edge map. (b) Edges are quantized into discrete ori-
entation channels. (c) Two-dimensional distance transform of each
orientation channel. (d) The three dimensional distance transform
DT 3 is updated based on the orientation cost. (e) DT 3 tensor is
integrated along the discrete edge orientations and integral distance
transform tensor, IDT 3, is computed.

Fig. 8: One-dimensional search. A template is rotated and
translated such that one template line segment is aligned with one
line segment in the query image. The template is translated along
the query line segment and the directional Chamfer matching cost
is evaluated.

of IDT 3V tensor is given by

IDT 3V (x, φ̂i) = ∑
x j∈l[x0,x]

DT 3V (x j, φ̂i). (10)

The IDT 3V tensor can be in one pass over the DT 3V tensor.
Using this representation, the directional Chamfer matching
score of any template U can be computed in O(m) operations
via

dDCM(U,V ) =
1

n ∑
l[s j ,e j ]

∈LU

[IDT 3V (e j, φ̂(l[s j ,e j ]))−

IDT 3V (s j, φ̂(l[s j ,e j ]))]. (11)

Since m << n, the computational complexity of the matching
is sub-linear in the number of template points n.

The O(m) complexity is an upper bound on the number of
computations. For pose estimation we would like to retain
only the best hypothesis. We order the template lines with
respect to their support and start the summation from the
lines with the largest support. The hypothesis is eliminated
during the summation if the cost is larger than the current
best hypothesis. The supports of the line segments show
exponential decay, therefore for majority of the hypotheses
only a few arithmetic operations are performed.

4)One-dimensional Search: The search for the optimal pose
over three parameters of planar Euclidean transformation
is computationally intensive to be practical for real-time
applications. The linear representation provides an efficient
method to reduce the size of the search space. The observa-
tion is that, the template and query image line segments are
near perfectly aligned with the true estimate of the template
pose. In addition, the major lines of the template and query
images are very reliably detected during the line-fitting since
the procedure favors segments with larger support.

We order template and query line segments based on their
support and retain only a few major lines to guide the search.
The template is initially rotated and translated such that the
template line segment is aligned with the direction of the
query image line segment and its end point matches the start
point of the query segment as illustrated in the Figure 8. The
template is then translated along the query segment direction
and the cost function is evaluated only at locations where
there is an overlap between the two segments. This procedure
reduces the three-dimensional search to one-dimensional
searches along only a few directions. The search time is
invariant to the size of the image and is only a function of
number of template and query image lines, and their lengths.
In almost all our experiments, search along 5 template and
50 query image lines produces near identical results to brute-
force search and the optimal pose can be found under a few
seconds for a database size of k = 300 templates.

V.POSE REFINEMENT

The minimum cost template together with its in-plane trans-
formation parameters (θz, t̄x, t̄y) provide a coarse estimate of
the 3D object pose. Let θx, θy be the out-of-plane rotation
angles and tz be the distance from the camera which are
used to render the template. We back project the in-plane
translation parameters to 3D using the camera calibration
matrix K, and the initial 3D pose of the object, p0, is given by
the three Euler angles (θx,θy,θz) and a 3D translation vector
(tx, ty, tz)T . The 3D pose p can also be written in matrix form

Mp =
(

Rp tp
0 1

)
∈ SE(3) (12)

where Rp is the 3x3 orthogonal matrix computed by a
sequence of three rotations around x−y−z axes RθzRθyRθx ,
and tp is the three-dimensional translation vector.

The precision of the initial pose estimation is limited by
the discrete set of out-of-plane rotations included into the
database. In this section, we present a continuous optimiza-
tion method to refine the pose estimation. The proposed
method is a combination of iterative closest point (ICP) [19]
and Gauss-Newton [4, pp.520] optimization algorithms.

Three-dimensional pose estimation from a single view is
an ill-posed problem. To minimize the uncertainty in pose
estimation, we use a two-view approach, where the robot
arm is moved to a second location and the scene imaged
with MFC. The edge points detected in the two views are

given by the sets V ( j) = {v( j)
i }, j ∈ {1,2}.



Let M( j) ∈ SE(3), j ∈ {1,2} be the 3D rigid motion matrices
determining the location of the two cameras in world coor-
dinate system and P = (K 0) be the 3x4 projection matrix.
The optimization algorithm minimizes the sum of squared

projection error between the detected edge points v( j)
i , and

the corresponding 3D points ũ( j)
i in the 3D CAD model,

simultaneously in both views

ε(p) = ∑
j

∑
ũ( j)

i

‖PM( j)MpM( j)−1
ũ( j)

i −v( j)
i ‖2. (13)

Note that, the projections of 3D points ũ( j)
i are expressed in

homogeneous coordinates and in this formulation we assume
that they have been converted to 2D coordinates.

We find the 3D-2D point correspondences via closest point
assignment on the image plane. We simulate the 2 camera
setup and render the 3D CAD model with respect to the

current pose estimate p. Let U ( j) = {u( j)
i }, j ∈ {1,2} be

the sets of detected edge points in two synthetic views and

Ũ ( j) = {ũ( j)
i } be the corresponding point sets in the 3D CAD

model. For each point in U ( j) we search for the nearest point
in V ( j) with respect to the directional matching score

arg min
v j∈V

‖ui −v j|+λ |φ(ui)−φ(v j)‖. (14)

and establish point correspondences (ũ( j)
i ,v( j)

i ).

The non-linear least squares error function given in (13) is
minimized using the Gauss-Newton algorithm. Starting with
the initial pose estimate p0, we improve the estimation via the
iterations pt+1 = pt +Δp. The update vector Δp is given by
the solution of the normal equations (JT

εεε Jεεε)Δp = JT
εεε εεε , where

εεε is the N dimensional vector of each of the summed error
terms in (13), and Jεεε is the Nx6 Jacobian matrix of εεε with
respect to p, evaluated at pt . The correspondence and mini-
mization problems are solved repeatedly until convergence.
The initial pose estimate given by the matching algorithm is
usually close to the true solution, therefore in general 5−10
iterations suffice for convergence.

VI.EXPERIMENT

We performed an extensive evaluation of the proposed sys-
tem using synthetic and real experiments with a robot arm.

A. Experiments on Synthetic Examples
We quantitatively evaluated the accuracy of the proposed sys-
tem to detect and localize objects in highly cluttered scenes
on an extensive synthetic dataset. The synthetic dataset
consisted of 6 objects of varying complexity in their 3D
shape placed randomly one over the other to generate several
cluttered scenes (Figure 9). There were a total of 606 such
synthetic images that were rendered. The average occlusion
in the dataset was 15% while the maximum occlusion was
25%. Moreover, in order to simulate missing depth edges and
imperfections in the MFC, a small fraction (about 10−15%)
of the depth edges was also removed.

Detection and Localiztion: We compared the performance
of the proposed cost function to those of the Chamfer cost

Det. Circuit Diamond Ellipse T-Nut Knob Wheel Avg.
Rate Breaker Toy Toy
Ours 0.03 0.01 0.05 0.11 0.04 0.08 0.05
[15] 0.05 0.05 0.14 0.17 0.04 0.17 0.10

Chamfer 0.11 0.22 0.26 0.34 0.26 0.22 0.24

TABLE I: Detection Failure Rate comparison in highly clut-
tered scene with multiple objects.

Fig. 9: Examples of successful localization on the synthetic
dataset. First column represents the six different target objects.

function and the oriented Chamfer cost function [15]. The
detection failure rate is shown in the Table I. The proposed
matching cost formulation reduced the detection failure rate
of Chamfer matching from 0.24 to 0.05. It also reduced the
error rate of competing state of art matching formulation of
oriented Chamfer matching by half. We also observe that
objects with discriminative shapes were easier for detection
such as the diamond toy and the circuit breaker. On the
contrary, the T-Nut object, which has a simple shape, is
relatively hard for detection since false edges from clutter and
other objects frequently confuse the optimization algorithm.
Several examples of successful detections for various objects
in challenging scenarios are shown in Figure 9.
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Fig. 10: Detection rate versus percentage of occlusion.
Avg. tX tY tZ θX θY θZ

abs err. mm mm mm degree degree degree
1 View 0.127 0.165 1.156 0.674 0.999 0.349
2 View 0.094 0.096 0.400 0.601 0.529 0.238

TABLE II: Comparison of the average absolute pose estima-
tion error between the one-view and two-view approaches.

Robustness to Occlusions: We further quantitatively eval-
uated the robustness of the proposed cost function against
varying degrees of occlusion from no occlusion to an average
occlusion of 0.30. The results are presented in Figure 10. We
achieved greater than 99% detection upto 5% occlusion and
about 85% detection rate when one-fourth of the object is
occluded.

Two View Pose Estimation We evaluated the pose es-
timation algorithm using a similar synthetic setting. We
randomly rendered a set of poses of various objects. After
a coarse pose estimate was computed, both the refinement
scheme using one view and that of using two views were
applied independently to further refine the estimate. The final
estimates were compared to the ground truth and the results
show that the two-view approach outperformed the one-view
approach (Table II). 1mm corresponded to about 6.56 pixels
on the image plane indicating that the two-view estimate was
sub pixel accurate.

B. Experiments on Real Examples:
Object Detection and Pose Estimation in Clutter: To
quantitatively evaluate the performance, we created several
real test examples. Seven different objects were laid one on
top of another in a cluttered manner as shown in Figure
11. We then performed object detection, localization and
pose estimation on these real examples. The experiment
was repeated for several hundred trials and found that the
detection rate was about 95%. Shown in Figure 11 are some
typical example trials of the real experiment. In each image,
we render the silhouettes of the top detector outputs for three
different objects. We render the estimated depth edges of the
objects over the actual captured images in order to show the
accuracy of the algorithm. Notice, that some of the parts
have no texture while others are mildly specular. Traditional
image edge (eg., canny) based methods usually fail in such
challenging scenarios. The use of MFC allows us to robustly
extract depth edges even in such challenging scenarios. Also
notice, that since the MFC feature is texture independent, the
method works robustly for parts that have artificial texture
painted on them. This indicates that the method can work in
the presence of oil, grime and dirt (which are all common
in industrial environments) all of which add artificial texture
to the surface of objects.

Statistical Evaluation: In order to statistically evaluate the
accuracy of the proposed system, we need a method for

Fig. 11: Performance on real examples. The system detected and
accurately estimated the pose for specular as well as textureless
objects. Shown in these images are the top detector outputs for
three different objects overlaid on top of the original images.

independently obtaining the 3D ground truth pose of the
object. Since there was no simple way of obtaining this
(especially for cluttered scenes), instead we devised a method
to evaluate the consistency of pose estimate irrespective of
the viewpoint of the camera. We placed an object in the
scene. At each time, the robot arm was commanded to
perform a different rotation and translation. From each of
these views, the MFC image was obtained and the pose
estimate was obtained in the camera coordinate frame. Since
the object is static, the estimated pose of the object in the
world coordinate system should be identical irrespective of
viewpoint of the MFC. For each view, the estimated pose
of the object was transformed to the world coordinate frame
using knowledge of the position and orientation of the robot
arm. The same experiment was repeated for 7 different
objects with 25 trials for each object with the object in a
different pose in each trial. During each of these independent
trials the robot arm was moved to 40 different viewpoints in
order to evaluate the consistency of the pose estimate. The
histogram of the deviations (from the median) of the pose
estimate is shown in Figure 12. The results demonstrate that
the algorithm results in consistent estimates with standard
deviation of less than 0.5mm in the in-plane directions (X,Y)
and about 3 degrees in all three orientation estimates. The
standard deviation in estimate of Z ( Z-axis coincides with
the optical axis of camera) is slightly larger (about 1.2mm).

C. Real Experiments on Robot Arm
We evaluated the algorithm on an industrial robot arm as
shown in Figure 1. Several parts were thrown together in
a bin to create cluttered scenes just as shown in Figure



Fig. 12: Histograms of deviations from the pose estimates to
their medians in the real examples.

11. The gripper was made up of three vertical steel pins
each of 1mm diameter. The gripper of the robot arm was
designed to pick each of the objects by first inserting the
three vertical pins through a hole in the objects. Then the
gripper opens the 3 pins thereby exerting horizontal force
on the inside edges of the hole. The hole in the objects
was about 5mm to 8mm in diameter. Therefore, in order to
successfully insert the gripper inside the hole (before lifting
the object) the error in pose estimate should be less than
about 1.5mm. When the pose estimate error is greater than
about 1.5mm the pins are not inserted into the hole and this
results in a failure to pick up the object. The proposed system
is able to successfully guide the robot arm in the grasping
task. We achieved a 0.95 grasping rate over several hundred
trials. Among the 5% grasp failures a significant majority
(about 3%) were acually successful pose estimations. But
in these cases, the hole for grasping the target object was
occluded by other objects. Hence, while attempting to pick
these objects the gripper hit other objects and failed. We
refer the readers to the supplemental material for videos of
the robot arm accomplishing this task. In all these cases,
the object detection, localization and pose estimation took
an average of 6 seconds for an object in extremely cluttered
environments (on an Intel 2.66Ghz CPU with 3GB memory).
In environments with minimal clutter the algorithm runs
almost twice as fast since there are much fewer edges on an
average. On average the matching task requires 2 seconds
and pose refinement requires 2 seconds where the rest of the
computation time is shared among depth edge extraction,
thinning and line fitting.

VII.CONCLUSION AND FUTURE WORK

We presented a system for object detection, localization and
pose estimation using MFC. We formulated the problem as
one of finding matches between the depth edges obtained in
one or more MFC images to the rendered depth edges that are
computed offline using 3D CAD models of the objects. We
introduced a novel cost function that is significantly superior
to traditional chamfer cost and developed multi-view based
pose estimation and refinement algorithms. We implemented
the system on a robot arm and achieved location and angular

estimation accuracies of the order of 1 mm and 2◦ respec-
tively.
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