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Abstract—This paper presents a Park transform-based method
for preprocessing stator current data from a motor and trans-
forming it into a form that is useful for fault detection and
diagnostics. The proposed method generates power signatures
that are invariant to the initial electrical angle of the voltage
when the motor is connected to the utility, and can also adapt to
variations in the electrical angle of the supply voltage over time. A
modified nonlinear least squares algorithm identifies and tracks
the parameters of the supply voltage over time, ensuring that

the supply voltage and the argument of the Park transformation
remain synchronized. Experimental results are presented that
illustrate the method’s effectiveness for identifying changes in
the mechanical load on a 3/4 HP refrigeration compressor.

I. INTRODUCTION

As the cost of energy rises and electromechanical systems

perform a growing share of important functions in our soci-

ety, methods that assess the reliability of these systems are

increasing in importance. Such methods may be designed to

enable condition-based or “just-in-time” maintenance. Mon-

itoring systems may assume a range of complexity, from

the installation of a simple sensor that produces an alarm

when a fault condition is manifested, to a system which

monitors and identifies trends in the system state and model

parameters which are indicative of either normal or abnormal

events or operation. Fully automatic monitoring and control

systems may also be used to adjust the system operation by

incorporating such information.

Rotating electric machinery is subject to a wide variety

of faults at both the electrical and the mechanical ports.

Some representative electrical faults include broken rotor bars,

shorted windings, and rotor eccentricity. Mechanical faults

may also occur, including bearing failure, load imbalance, and

other related faults that are associated with the particular load

being driven. One popular strategy for identifying these faults

involves the sole use of electrical measurements to identify a

variety of either electrical or mechanical faults. These methods

are appealing because the lack of mechanical sensors may

reduces both the cost of fault monitoring and the probability

of false alarms due to sensor failures.

Fault diagnosis through electrical monitoring has received a

great deal of attention over the last 20 years [1], [11], [15]–

[17], and has been successfully used to identify many different

electrical and mechanical fault conditions. One particularly

popular approach is referred to as motor current signature

analysis (MCSA) [4], in which the spectra of the monitored

currents are analyzed and coupled with a priori knowledge

to identify a number of different faults. These methods have

also been extended to monitor other mechanical quantities,

such as rotor speed, by only using measurements of the

electrical terminal variables [3], [5]. Methods have also been

developed which can simultaneously identify both electrical

and mechanical parameters of models of the machine, and

which can evaluate the condition of the machine from the

behavior of these parameters [9], [14].

Condition monitoring methods based upon the analysis of

the machine’s time domain behavior, such as non-intrusive

load monitoring [8], [10] can be quite useful, due to the

fact that many different faults evince characteristics that

change with time. Such methods can provide a variety of

information to an equipment operator or facilities manager,

such as power consumption and diagnostic capabilities. Such

electrical monitoring techniques are challenging to implement

in AC systems for at least two reasons. First, the relevant

changes in the stator currents are modulated on top of the

base utility frequency (e.g. 60 Hz), so that the waveform must



effectively be demodulated to facilitate the implementation of

high-accuracy change detection methods. Second, observations

of individual phase currents on multi-phase machines during

the transient startup period of the machine are dependent upon

both the initial conditions of the system (e.g. initial phase of

the utility and the initial position of the rotor and the coupled

mechanical system) and the dynamic behavior of the machine.

Observations of one current thus may not adequately reveal the

possible manifestations of faulty behavior.

The well-known Park or coordinate-frame transformation

for three-phase machinery can provide a useful framework

for these diagnostics. These rotating transformations are com-

monly used for machine design and control, but the simplifi-

cations that result from applying the transformation can also

be useful for condition monitoring [2]. This research exam-

ines the application of the synchronously rotating reference

frame to diagnostic methods for induction machines in HVAC

applications, such as refrigeration compressors.

A principal benefit of this transformation is that the 60 Hz

components of the electrical waveforms can be eliminated by

synchronizing the transform with the electrical angle of the

utility. The resulting transformed waveforms can expose small

changes in the machine behavior [10]. The transformation of

the observed stator currents will also produce identical results

regardless of the starting angle because the initial angle of the

utility is incorporated into the transformation matrix.

In an active control application, the rotating frame transfor-

mation is relatively easy to implement, because the controller

specifies and measures the characteristics of the drive wave-

forms. The transformation is much more difficult to implement

on machines that are connected directly to the electric utility,

however, since the characteristics of the utility voltage must

be modeled and measured accurately to identify the electrical

angle. This becomes especially challenging when the electrical

angle of the drive waveforms is not a simple affine function

of time.

This paper proposes a method for performing condition

monitoring on three-phase electromechanical devices by using

the Park transform to process the voltages and currents mea-

sured at the terminals of the machine. The method described

can track and compensate for non-affine variations in the elec-

trical angle θe(t) of the drive voltage, allowing this condition

monitoring approach to work on machines connected directly

to the electric utility. Both simulations and experimental results

demonstrating the effectiveness of this condition monitoring

method are provided. Section 2 of this paper will describe the

nonidealities of the electric utility that have a direct effect on

the implementation of the Park transformation, as well as the

method that was used to compensate for these nonidealities.

Section 3 will briefly describe the experimental platform which

was used to test this condition monitoring method and then

present results indicating its effectiveness. Section 4 will then

conclude this paper with a review of the method which has

been developed.

II. THE ADAPTIVE PARK TRANSFORM

In general, one of the difficulties inherent in describing

the behavior of most rotating electric machinery is that the

machine inductances are a function of both the electrical and

the mechanical angles of the machine. To simplify this process,

R.H. Park developed a transformation that made the analysis
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Fig. 1. vds and vqs transformed without correction. The sinusoidal variation
in these waveforms is due to the variation in φe(t).

of electric machines more straightforward by transforming

the motor equations into a reference frame that is rotating

synchronously with the fields in the machine [12]. This Park

transformation can be written as
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or, in a more compact form,

fdq0 = T(θ)fabc (2)

where f stands for the variable to be transformed, such

as voltage, current, or magnetic flux. The argument of this

transformation θ = ωt can theoretically be chosen arbitrarily;

one useful choice for induction machines is the electrical angle

of the voltages driving the stator windings. In this case, the

measured variables are transformed into the reference frame

that is rotating synchronously with the driving voltages.

To implement this transformation, the angle of the electric

utility θe must be estimated at all points in time to maintain

synchronization between the transformation matrix and the

observed data. Unfortunately, this angle cannot be modeled

as a simple affine function of time, e.g., θe(t) = ωet + φe,

due to nonidealities present in the system. A more accurate

functional description of the electrical angle of the utility is

θe(t) = ωet + φe(t). This model for the voltage waveform on

the electric utility does not capture its full harmonic content;

for example, the prevalence of switching power supplies

and other loads typically leads to substantial third-harmonic

distortion of the utility voltage. However, the simplicity of

this representation is useful, and this model will therefore be

referred to extensively in this paper because it captures the

effective changes in the electrical angle that occur, as well as

the potential error in the estimate of the electrical frequency

ωe.

While this variation in θe may not be initially expected,

it can be observed in experimentally measured data from

the electric utility, as illustrated in Figure 1. The frequency

of the utility ωe was estimated for this waveform by fitting

the first two line cycles of the data to the model of the



utility voltage V cos(ωet + φe), where both ωe and φe are

constant. This figure illustrates the effect of applying the Park

transformation with θe(t) = ωet + φe and neglecting the

variation in φe(t). Since vds and vqs would be constant if

the electrical frequency was an affine function of time, the

variations apparent in this figure indicate that the estimated

electrical frequency varies with time. Among other sources of

distortion, neighboring load currents can induce voltages in the

utility impedances that periodically distort the zero crossings

or phase of the utility voltage waveform on a relatively short

timescale. This experimental data suggests that this problem

can indeed be formulated as a problem in which the time-

varying parameter θe(t) must be estimated from observations

of the signal V cos(θe(t)).

In general, the problem of identifying the argument θe of

a sinusoidal function v(t) = cos(θe(t)) is highly nonlinear,

as the residual between a set of observations and the output

of the associated model will have a large number of local

minima. These local minima can be problematic for gradient-

based minimization methods, such as the Gauss-Newton or

Levenberg-Marquardt algorithms, as they can cause them to

converge to a parameter that is far away from the global

minimum. One approach that was found to assist in avoiding

the trap of local minima is described in detail in [13], and is

outlined briefly below.

This solution to the problem is based upon the observa-

tion that many types of system identification problems, such

as those based upon sinusoids or sums of sinusoids, have

residuals that are often nearly linear in the parameters for a

small subset of observations [14]. One technique for solving

these nonlinear least squares problems that incorporates this

observation identifies the number of datapoints for which

the residual is expected to be linear, and then performs the

minimization over this subset of datapoints. By solving a series

of minimization problems in which the size of this subset

of observations is gradually increased, the convergence of

nonlinear least squares is greatly improved.

For example, suppose that one had a set of observations

of a sinusoid generated by yobs = cos(2πtk), and that the

model for this signal is cos(µtk), with the resulting residual

expressed as

rk = ŷ(µ, tk) − yobs(tk). (3)

Since this data is nearly linear for tk < 1/8, the procedure will
first identify the number of samples K for which tk < 1/8.
Once this length K of the subset was identified, the nonlin-

ear least squares problem is solved using only the first K
datapoints of yobs, thus taking advantage of the fact that the

residual of the problem is nearly linear in this region to ensure

that no local minima are present. Once the final parameter

estimate µ(1) for this subproblem is obtained, it is then used

as the initial guess to solve the next subproblem, in which the

first 2K datapoints of yobs are used to find the next parameter

estimate µ(2). This process continues until the number of

datapoints over which the minimization takes place is equal to

the number of datapoints in yobs, and the parameter estimate

µ⌈(N/K)⌉, which is calculated for the length of the dataset,

represents the final least-squares estimate for the problem.

The advantages of this method can be seen by considering

the loss function described. The normalized residual r(µ̂)/N

Fig. 2. Loss function showing the effect on r(µ̂) of varying both the initial
guess µ̂ and the number of points K used in forming the residual.

to be minimized in this case is

r(µ̂)

N
=

1

N

N∑

k=1

(sin(µ̂kTs) − sin(µkTs))
2 (4)

where Ts is the sample period for the waveform, k is the

sample index that runs from 1 to N , the true parameter of

the system is µ, and the present estimate of the parameter

is µ̂. Figure 2 illustrates this loss function when the number

of samples of the sine wave is relatively large, so that many

periods of the sine wave are represented in the data. By using

the algorithm described above to find the estimate µ̂ by solving

the series of minimization problems in which the number of

samples of the observed dataset K is slowly increased from a

small number to the length of the dataset N , the susceptibility

of nonlinear least squares to local minima is greatly reduced.

While this approach to solving the nonlinear least squares

problem has proven to be effective, it necessarily takes a long

time to converge if the region over which the problem is linear

is very small in comparison to the size of the dataset. An

additional observation for this problem that points to a means

of improving the method’s performance in this regard is that

one would not expect the estimate of µ to change appreciably

for tk > 1, and the method could presumably move very

quickly through the remainder of the dataset in the absence

of measurement noise. This observation can be integrated into

the method by supposing that a Taylor series exists for the

model, so that the residual can be rewritten

ŷ(µ, tk)

rk =

︷ ︸︸ ︷
(

ŷ(µ, 0) +
d

dt
ŷ(µ, 0)tk +

d2

dt2
ŷ(µ, 0)t2k + · · ·

)

−

yobs(tk)
︷ ︸︸ ︷
(

a + btk + ct2k + · · ·

)

. (5)

Since many problems that can be written in the above form

are dominated by their DC- and first-order coefficients, it

is possible to control the size of the dataset by analyzing

the output of the Taylor series expansion of the residual r.
The method can set the size of the increment on the dataset

by comparing the coefficient of the second-order term to

an established threshold, thereby ensuring that the method
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Fig. 3. D- and Q-axis voltages transformed with phase correction.

will converge. By using the Taylor series expansion of the

residual, the time that the method takes to identify the desired

parameters can be improved markedly without sacrificing the

ability of the method to avoid local minima. Additional details

regarding the development and application of this method can

be found in [13].

To compute this time-varying estimate of θe, it is necessary

to identify the parameters V , ωe and φe(t) for the observed set
of balanced three-phase voltages. As all of the time-varying

components of θe(t) can be incorporated into the term φe(t),
the base frequency ωe and the amplitude V of the waveform

are relatively constant and can be estimated from the first two

line cycles of the data. The previously described parameter

identification method was then used to update the estimate of

θe after every successive cycle, so that the time variations of

φe are represented by differing successive estimates of this

quantity. These updates of the phase could have been made

more frequently, but laboratory experience suggested that this

update frequency adequately tracked the changes in φe(t) over
time. An additional benefit of this method for tracking the

phase angle of the utility is that it does not require large

amounts of data storage, as records of only a few cycles

of observations must be stored at a given point in time. In

addition, while it would have technically been possible to track

θe(t) directly rather than only φe(t), the computational burden

of re-estimating θe at every datapoint has minimal benefit over

updating φe once every cycle.

After these estimates of φe are computed at the beginning

of every line cycle, they are used to calculate θe at each

sample point. These values are then used to implement the

Park transformation from Equation 2 on the measured voltages

and currents. The results obtained from implementing this

transformation on experimentally measured data are discussed

in the following section.

III. EXPERIMENTAL RESULTS

Initial testing of the parameter estimation method was

performed in Matlab for the purposes of evaluating its perfor-

mance by processing the same dataset illustrated in Figure 1.

The efficacy of this method for tracking the variation in θe

can be seen in Figure 3, as the constant nature of these wave-

forms suggests that the transformation was able to adequately
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compensate for the time-varying and unmodeled behavior in

the observed voltage waveform. It is important to note that

the angle between the voltage phases does not vary, but rather

only the phase φe(t = T ) at any instant T in comparison to

the phase at time t = 0.

Two sets of predictions of θe were generated from the

measured set of data used in Figures 1 and 3 to compare the

measured dependence of the electrical angle of the utility with

the expected electrical angle. This data was fit to the nonlinear

model described in Section II, and the resulting fit is referred

to as θe,nonlin. Since the utility is normally modeled by

θe,lin(tk) = ωetk+φe, standard linear least squares techniques

were used to fit this linear model to the vector θe,nonlin(t),
making it possible to obtain non-time-varying estimates of the

parameters ωe and φe. The nonlinear time-varying component

of the angle θe[k] can then be observed by forming the residual

θe,nonlin − θe,lin. This is illustrated in Figure 4.

Figure 5 further illustrates the effects of the time variations

in the model for the utility voltage. Rather than calculate

the frequency of the utility voltage from the first two line

cycles, an FFT was performed on the whole waveform, and



the peak of this FFT was used to estimate the line frequency.

This has the effect of finding the average frequency over the

complete waveform. This estimate of the frequency was used

to fit the measured data to the usual model for the utility

voltage with constant ωe and φe, producing an estimate of

the electrical angle θe,FFT . Figure 5 illustrates the residual

θe,nonlin, obtained from the nonlinear estimation process and

θe,FFT . While the process of using the FFT might be expected

to improve the estimate of ωe, this plot confirms the fact

that the apparent variations in θe should not attributed to a

particular estimate of ωe, but rather to the fact that the phase

φe effectively varies with time.

A number of induction motor simulations were run to

investigate the changes in ids and iqs that occur during the

startup transient with an increased load torque. A standard

fifth-order induction motor model [6] was used to simulate the

behavior of the machine. After transforming the constitutive

relations into the synchronous reference frame, the following

equations describe the machine behavior:

dλqs

dt
= vqs − Rsiqs − ωeλds (6)

dλds

dt
= vds − Rsids + ωeλqs (7)

dλqr

dt
= vqr − Rriqr − (ωe − pωr)λdr (8)

dλdr

dt
= vdr − Rridr + (ωe − pωr)λqr . (9)

where λ denotes the flux linkages with the rotor variables and

parameters reflected to the stator, ωe is the frequency of the

stator excitation (i.e. the frequency of the drive voltage) in

rad/s, ωr is the rotor speed in rad/s, and p is the number

of pole pairs. The voltages vds and vqs represent the driving

voltages in this application, while vdr and vqr are set to zero

due to the fact that the rotor bars are shorted together on a

squirrel-cage machine. The flux linkages and the currents are

related by the following equations:

λqs = Llsiqs + Lm(iqs + iqr) (10)

λds = Llsids + Lm(ids + idr) (11)

λqr = Llriqr + Lm(iqs + iqr) (12)

λds = Llridr + Lm(ids + idr). (13)

The torque of electrical origin produced by the motor is given

by

τe =
3

2
p(λqridr − λdriqr). (14)

This torque τe is related to the mechanical load of the fan by

the usual force balance equation,

dωr

dt
=

1

J
(τe − βω2

r ). (15)

To simulate the change in mechanical load due to the

presence of liquid in the compressor cylinder, the damping

coefficient β was changed between these simulations. The

resulting d-axis current ids from these simulations can be

seen in Figure 6. While there is initially no difference in the

transient behavior of ids, there is a large difference between the

two conditions after approximately 0.17 sec. This effect makes

physical sense, as the load torque βω2
r is minimal while ωr

is small, so that most of the energy is accelerating the inertia

of the rotor. As the rotor accelerates, the torque βωr becomes

much larger, and has a substantial effect on ids.
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Fig. 6. Simulated ids for higher load torque in comparison to lower load
torque.

Further testing of this algorithm was conducted as part

of an experiment designed to study the feasibility of using

this condition monitoring method to detect changes in the

mechanical loading on the pistons of a 3/4 HP refrigeration

compressor due to the presence of liquid in the cylinders. A

set of three LEM LA-55P current transducers and three LEM

LV-25P voltage transducers were installed on the compressor

and used to measure the voltages and currents at the motor

terminals. These sensors were interfaced to an 8 channel

custom data acquisition system that operated at a sampling

rate of 8 kHz/channel, and a Debian Linux-based PC was used

to acquire the data.

Two sets of data were collected with this experimental setup

to verify the behavior that was observed in the simulated

results. The first of these datasets was collected under normal

conditions, while the second set was collected when there was

liquid refrigerant present in the compressor cylinder. Care was

taken during these experiments to ensure that the compressor

started from identical conditions (i.e. piston position and

winding temperature) for each dataset. Figure 7 shows the two

sets of traces corresponding to the compressor starts with and

without the presence of liquid in the compressor cylinder.

These results demonstrate the effectiveness of electrically-

based methods for the identification of liquid refrigerant in

the compressor cylinder. It is particularly notable that there is

considerable qualitative agreement between the shapes of the

simulated ids and the experimentally observed ids in that the

effect of the liquid on ids is manifested predominantly at the

end of the transient. The similarity of the steady state values of

ids can be attributed to the fact that no liquid is present in the

cylinder after it is ejected, causing ids for this case to be iden-

tical to ids when no liquid was ever present in the cylinder. A

condition monitoring method to identify the presence of liquid

could thus be constructed by analyzing the interval between

0.6 and 0.12 sec to distinguish between faulty and non-faulty

behavior. This figure shows very clear differences between

the two sets of traces corresponding to compressor starts

in normal operating conditions and under faulty operating

conditions, suggesting that this condition monitoring method

would be useful for identifying this mechanical fault using
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only observations of electrical variables. Additional related

results and development of this condition monitoring method

can be found in [7].

IV. DISCUSSION

This paper described a method for preprocessing observed

three-phase current data from electromechanical systems that

could be used for condition monitoring that is invariant to both

changes in the initial electrical angle and to variations in the

electrical angle with time. This method was demonstrated to

be effective both on a simulation of an induction machine and

also on an experimental refrigeration compressor connected

directly to the utility.
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