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Abstract—This paper describes and demonstrates a mathe-
matical algorithm that can monitor the physical parameters
of the motor solely by observing the stator electrical currents.
This method uses measurements of transient stator currents to
identify the parameters of an electromechanical model of the
induction motor. These parameters are obtained from a relatively
poor initial guess, which is constrained only to be within an
order of magnitude of the physical parameters, by using a
two-step strategy based upon nonlinear least-squares regression
techniques. This makes the approach in this paper useful for
diagnostic monitoring and energy scorekeeping. Experimental
results are presented which demonstrate the effectiveness of this
method on identifying the parameters of a 1 HP induction motor
connected to a squirrel cage fan in an air-handling unit.

Index Terms—Induction machines, parameter estimation, fault
diagnosis.

I. INTRODUCTION

Induction machines, which are central to modern commer-

cial and industrial processes, are sometimes referred to as the

“workhorses of modern industry.” Due to their importance, the

control and condition monitoring of these machines have long

been investigated. For many applications, it is very convenient

to identify and track the parameters of an electromechanical

model of the induction machine. Accurate estimates of the

model parameters of the machine are essential to the construc-

tion of robust control algorithms, and valuable information

Essential funding and support for this research was provided by the
Grainger Foundation, the National Science Foundation, NASA Ames Research
Center, NEMOmetrics, Inc., and the Office of Naval Research under the
ESRDC program.

about some of machine faults can be inferred from changes

in the estimated model parameters. Estimates of the model

parameters can also be used to assist in probing the mechanical

condition of the load connected to the shaft, e.g., for deter-

mining fan or pump performance. Motor parameters estimated

from field observations can be used to diagnose the operating

health of systems like heating, ventilating and air conditioning

(HVAC) units while operating in the field. Reliable parameter

estimates make it possible to use actuators like the motors in an

HVAC plant as “sensors” for the electromechanical condition

of the plant given only a set of electrical measurements.

A wide variety of modeling, signal processing, and control

techniques have been developed to ensure that induction

machines function reliably and can be serviced before causing

equipment failure. Surveys that describe the scope of this

existing research are presented in [1]–[3]. In general, the

overall function of these methods can be described as using

observations of the motor to find a set of parameter values for

a suitable model that will accurately characterize the operation

of the machine over the desired range of operating conditions.

This wide array of extant methods for parameter identi-

fication can largely be distinguished on the basis of three

characteristics: the model of the induction machine used for

parameter identification, the set of measurements of the induc-

tion machine’s behavior that are obtained, and the algorithm

which is used to generate the parameter estimates for the

given model from the information obtained by the given set

of sensors. These methods can also be implemented either as

“offline” or “online” processes [3]. In an offline process, the



parameters of the machine are estimated either at the factory

or in a preliminary commissioning step before the machine

is installed at the site, while an online process uses in situ

measurements obtained while the machine is operating in its

specified function to estimate the parameters of the model.

This paper focuses on the “online” approach to parameter

identification as it is often desirable to identify the evolution of

the machine parameters without removing the machine from

service.

In experimental conditions where a great deal of information

is required about the behavior of the machine, relatively large

numbers of sensors may be used to measure the machine’s

behavior, including the fluxes, voltages, currents, and position

and/or speed [2]. While this approach can provide very ac-

curate parameter estimates, large numbers of measurements

may be prohibitively expensive and can also introduce un-

wanted uncertainty about the measurement reliability. Another

approach, which uses a smaller number of measurements,

adds additional hardware to excite the motor windings with

specially designed signals that can yield particularly useful

information about the machine parameters, e.g. [4]. While this

approach still requires additional hardware, this hardware is

often designed to be easily installed, as opposed to the full

set of instrumentation that is required to measure all pertinent

electrical variables.

Many parameter estimation algorithms for electric machines

are designed in part to minimize the number of installed

sensors, reducing the cost and maintenance burden for the

sensors. Many of these methods rely upon measurements of

the voltage and current at the stator windings, as well as

the rotor speed [5], [6]. Many different parameter estimation

approaches have been successfully deployed, including genetic

algorithms [7], constrained least squares minimization [8], and

nonlinear least squares [6]. Reference [6] estimates the load

inertia J and the load torque τL in addition to the electrical

parameters of the machine. Estimates of these load parameters

can be used to monitor the condition of the load concurrently

with the monitoring of the motor. Motivated by the desire

to further reduce the number of sensors, speed-sensorless

approaches attempt to estimate parameters without direct mea-

surements of the mechanical shaft. For example, reference [9]

estimates the parameters of an induction machine solely based

on observations of the transient excitations of the electrical

terminal variables. Shaft-sensorless techniques are desirable

for smart-grid, energy scorekeeping, and diagnostic tracking

applications, such as nonintrusive load monitoring [10].

One of the salient challenges in estimating the parameters

of an induction machine model, such as the fifth-order model

given in [11], is that the parameters are embedded in the

observed currents and voltages in a highly nonlinear fashion.

Successful parameter estimation algorithms typically require

an initial guess which is very close to the actual parameter

values [12]. To reduce the sensitivity of the parameter estima-

tion method to the particular values of these initial guesses,

this paper demonstrates an algorithm for using nonlinear least

squares to estimate the machine parameters applied to reduce

x
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Fig. 1. The basic structure of the simulation process.

x
gi(f2();x;y) θ̂

y

Fig. 2. The basic structure of the estimation process.

the susceptibility of nonlinear least squares to converge to

a local minimum rather than the desired global minimum.

Convergence of the nonlinear least squares algorithm is im-

proved by using a “pre-estimation” technique [13], which both

increases the effective convexity of the function and decreases

the sensitivity of the algorithm on the particular value of the

initial guess by adding an additional step in the algorithm. This

research builds upon the initial description of pre-estimation

provided in [13] and presents a novel example of the benefits

of this approach to parameter estimation.

Following this introduction, the two-step approach used to

identify the parameters of the electromechanical model of the

induction machine from the observations of the stator current

will be discussed in Section 2. Experimental results obtained

by implementing this method and testing it on the stator

currents observed on a 1-HP machine connected directly to

the electric utility will be presented in Section 3. These results

will be reviewed in Section 4.

II. TWO-STEP PARAMETER ESTIMATION METHOD

The parameter estimation method developed in this paper

uses the processes of both simulation and estimation, as illus-

trated in Figures 1 and 2. The process of simulation (denoted

in Figure 1 as gf to represent the solution of the “forward

problem”) generally uses a known functional mapping f1() to

generate a set of predicted outputs ŷ from a set of measured

inputs x, and the parameters θ which govern the behavior

of this mapping are known in advance. In comparison, the

process of parameter estimation, sometimes referred to as an

“inverse problem” or gi in Figure 2, uses a set of observations

of both inputs x and outputs y to construct the functional

mapping between the two sets of observations. The output of

the inverse problem is thus the set of parameters θ̂ which best

constructs this mapping.

Because the formulation of forward models is usually much

more straightforward than inverse models, a variety of different

approaches have been studied for the development of these

inverse models. An obvious approach is the construction of the

exact inverse mapping g−1
f ; while the simplicity of this method

is appealing, major problems in implementing such inverse

mappings often arise due to nonlinearities, poor numerical

conditioning, or other pathological behavior. Instead of directly

inverting this model as in [6], an alternative approach for

parameter identification used here embeds the forward model

directly in the parameter estimation method, as illustrated in

Figure 3.
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Fig. 3. Structure of an estimation method that incorporates a forward model.

This diagram illustrates the means by which the simulation

is incorporated into the overall parameter estimation method

gi; the overbrace gi in Figure 3 signifies that the function gi in

this figure represents the corresponding function in Figure 2.

The simulation routine is initialized with an initial guess for

parameters θ0 as well as the inputs to the system x, the sim-

ulation is run, and then the resulting output of this simulation

ŷ(θ,x) is fed into the estimation routine fi. This estimation

routine compares the observed data vector y and the output of

the simulation ŷ(θ,x), and computes a new parameter estimate

θ[k], which is then fed back into the simulation routine. After

the first iteration, the parameters θ of the simulation ff are

updated with the most recent parameter estimate θ̂[k − 1].
This cycle is repeated until an exit condition is reached;

ideally the difference r(θ̂) = y − ŷ(θ,x) is reduced below

an established threshold, but other exit conditions typically

included to prevent the algorithm from running indefinitely

include exceeding a set number of iterations, no change in the

parameters, and no change in the evaluated residual.

The block denoted fi uses the Levenberg-Marquardt (LM)

algorithm [14] to generate and iteratively refine the parameter

estimates based upon the residual r(θ̂). This algorithm is use-

ful because it uses information from previous steps in updating

the parameter estimates, and can generate parameter estimates

quickly if the problem is formulated correctly. The unmodified

LM algorithm does not typically generate good parameter

estimates in a power system application, however, because the

residual being minimized, i.e. r(θ) = ||y − ŷ(θ,x)||22, has a

large number of local minima due to the sinusoidal excitation

of the system. Because the LM algorithm uses the gradient

of the residual to update the estimates of the parameters, the

parameter estimates produced often represent the optimum

parameter estimate in the region about the initial guess, rather

than the globally optimum parameter estimate.

Pre-estimation of the initial guess can be used to improve

the convergence of nonlinear least squares [13]. This technique

seeks to exploit the fact that a high-quality initial guess

will accelerate and improve the performance of nonlinear

least squares for many parameter identification problems. The

structure of this approach to parameter estimation can best be

seen in Figure 4. The poor initial guesses are provided to the

system as θ̂0, and are refined through pre-estimation algorithm

gi,pre to be pre-estimates θ̂pre. This high-quality initial guess

θ̂0 gi,pre θ̂pre

gi,f θ̂final

y

Fig. 4. Block diagram illustrating the structure of the pre-estimation method.

is then iteratively refined by the final parameter algorithm gi,f

to obtain the final parameter estimates θ̂final. In effect, the use

of pre-estimates trades computational time and complexity for

the quality of the initial guess. Each block in this diagram has

the form illustrated in Figure 3; that is, each of these blocks

has both an embedded forward model ff that generates a set

of outputs given the current guess for the parameters, and a

Levenberg-Marquardt block fi, which iteratively refines the

parameters. For clarity, the pre-estimation and final estimation

steps will be illustrated separately.

The motor model (represented as ff in Figure 3) used in

the pre-estimation block gi,pre and in the estimation block

gi,f is the fifth-order model of the induction machine [11].

The mechanical load coupled to the shaft was modeled with

two parameter model, consisting of an inertia and a damping

term. This approach is reasonable for many diagnostic appli-

cations, e.g. fans and pumps in HVAC systems. This model is

most conveniently represented in the reference frame rotating

synchronously with the stator voltages [15], i.e.
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or, in a more compact form,

fdq0 = T(θ)fabc, (2)

where θ = ωet in this application.

After applying this d-q transformation to the equations

describing the dynamics of the induction machine, the machine

can be described by the following equations:

dλqs

dt
= vqs − Rsiqs − ωeλds (3)

dλds

dt
= vds − Rsids + ωeλqs (4)

dλqr

dt
= vqr − Rriqr − (ωe − pωr)λdr (5)

dλdr

dt
= vdr − Rridr + (ωe − pωr)λqr . (6)

where λ denotes the flux linkages with the rotor variables and

parameters reflected to the stator, ωe is the frequency of the

stator excitation (i.e. the frequency of the drive voltage) in

rad/s, and ωr is the rotor speed in rad/s, and p is the number

of pole pairs. The voltages vds and vqs represent the driving

voltages in most experimental applications, as vdr and vqr

are set to zero due to the fact that the rotor bars are shorted
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Fig. 5. Envelope extraction block.

together on a squirrel-cage machine. The flux linkages and the

currents are related by the following equations:

λqs = Llsiqs + Lm(iqs + iqr) (7)

λds = Llsids + Lm(ids + idr) (8)

λqr = Llriqr + Lm(iqs + iqr) (9)

λds = Llridr + Lm(ids + idr). (10)

The torque of electrical origin produced by the motor is given

by

τe =
3

2
p(λqridr − λdriqr). (11)

This torque τe is related to the mechanical load of the fan by

the usual force balance equation,

dωr

dt
=

1

J
(τe − βω2

r). (12)

The pre-estimation step was designed to compensate for the

fact that the local minima in the residual are largely caused by

the sinusoidal component of the current transient. The rejection

of this sinusoidal or “carrier frequency” variation helps to

eliminate the local minima that degrades the performance of

the LM algorithm. Since the envelope of the motor current is

sensitive to changes in many of the motor parameters [16],

the envelope was extracted from the observed current data by

processing the measured currents with a low-pass filter using a

standard demodulation technique and Butterworth filters [17].

This technique has the effect of preserving the slow-moving

envelope while eliminating the 60 Hz component of the signal.

The cutoff frequency of the third-order Butterworth filters was

set to 15 Hz.

Figure 6 illustrates the effect of this filter, as the envelope

of the startup transient has been obtained from the input

current and the sinusoidal component of the current signal

has been eliminated. The sensitivity of this envelope to the

motor parameters makes this an ideal preprocessing method

from which parameter pre-estimates may be obtained.

Since all of the currents in the stator windings are nominally

identical for a balanced machine except for phase shifts, the

minimization was only performed against one phase of the

stator current, referred to as phase A. All three of the voltages

VAB , VBC , and VCA were measured, however, to perform the
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Fig. 6. Plot of the observed phase A motor current along with the
preprocessed envelope of the current.

d-q transformation and obtain the voltages VD and VQ in the

synchronous reference frame as required by Equations 3 and 4.

By incorporating this information from the pre-estimation

filter, the first of the two estimation steps may be described.

This first step, referred to in Figure 4 as gi,pre, is illustrated in

Figure 7. The user only needs to provide the set of observed

voltages and currents, as well as the approximate set of initial

guesses. Most of the initial guesses only need to be within an

order of magnitude; the only parameter which must be known

to any additional accuracy is the stator winding resistance. This

parameter can be determined with a simple measurement when

the induction machine is cold by an ohmmeter, and is used to

constrain Levenberg-Marquardt’s adjustment of the remaining

parameters.

The forward model ff is first initialized with the initial

guess of parameters θ̂init and the set of observed voltages vobs

are input to the parameter estimation method. The forward

model is then used to generate a set of predictions of the stator

currents î. These currents are filtered to obtain the current

envelope îfilt and this filtered prediction is then compared

to the the filtered set of observed currents iobs,filt. The

difference between these two signals is then input to the LM

algorithm, which generates a new estimate of the parameters

θ̂[k]. This estimate θ̂[k] of all of these parameters, except for

the stator resistance, is then iteratively refined until the signal

îfilt closely approximates the signal iobs,filt and the residual

r(θ) = ||yfilt − ŷfilt(θ̂,x)||22 is minimized. The resulting set

of parameters θ̂ that results after the iterations have stopped

is equal to the set of parameter pre-estimates θ̂pre.

It is important to note that the model parameters that are

pre-estimated are not adequate to describe the unfiltered set

of observations of the system; these pre-estimates are only

intended to serve as improved initial guesses for the parameter

estimation process for the unfiltered set of observations. In

order to find the set of parameters that most accurately

represents the unfiltered set of observations, a second step
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Fig. 8. Motor parameter estimation method: Step 2.

further refines the parameter estimates. In this second step,

the simulation ff is initialized with the improved pre-estimates

θ̂pre, rather than the set of rough initial guesses θ̂init. All of

the parameters, including the stator resistance, are iteratively

adjusted using LM in this step to minimize the residual

r(θ) = ||y − ŷ(θ,x)||22 to find the parameters which best

describe the observed currents.

Figure 8 illustrates this second step. It is clear from the

figure that the structure of the second step is very similar to the

first step, with the key difference that neither the output of the

simulation nor the observed currents are filtered. Because the

parameter estimation method operates on this unfiltered data,

the parameters that are iteratively refined will best characterize

the performance of the system. Furthermore, because the initial

guesses generated by the pre-estimation step are high quality,

the parameter estimates generated by Levenberg-Marquardt

are more likely to represent the global minimum, rather than

a local minimum. Once the method converges, the set of

parameters θ̂ are equal to the machine parameters θ̂final.

In both parameter estimation steps, the performance of the

standard Levenberg-Marquardt algorithm also depends on the

treatment of a few specific numerical considerations. The

first of these considerations pertains to the scaling of the

parameters: widely spaced parameters, whose size varies over

several orders of magnitude, can be very sensitive to the

parameter corrections applied by the nonlinear least squares

algorithm. For example, if the gradient of the loss function

in the direction of one parameter K is quite steep, the

corresponding adjustment to the parameters could cause a

large change in another very small parameter, such as β.

These large adjustments in β could consequently cause for the

convergence of the method as other parameters are adjusted

according to the new position on the loss function.

This problem can be mitigated by scaling the parameters in

the motor simulation according to their expected magnitudes,

which are relatively easy for a user to estimate. This will allow

the minimization algorithm to change all of the parameters

by the same order of magnitude; for example, if the true

parameters of the system are β = 5×10−6 and K = 140, scale

factors of 10−6 and 100 would multiply the parameters β and

K , respectively, inside of the simulation function, resulting

in final parameter estimates of 5 and 1.4. This approach

effectively stretches the residual space so that it makes all

of the scales of the parameter gradients comparable.

Other important constraints were implemented to improve

the performance of the minimization algorithm. One such

constraint incorporates the fact that the parameters of the

model cannot be negative, due to physical considerations. This

constraint was implemented in this research by applying a

sigmoid, or logistic, function to the parameters. The behavior

of this function is given by

f(x) =
1

1 + e−αx
. (13)

This constraint was implemented in much the same way as

the scaling; the parameter estimates generated by nonlinear

least squares were transformed using this sigmoid function,

and the resulting transformed parameters were used in the

motor simulation. This had the effect of transforming the

constrained optimization problem, which ensures physically

realistic parameter values, into an unconstrained parameter

identification problem. Unlike the parameter scaling discussed

previously, this constraint was only imposed during the pre-

estimation step, as the parameter pre-estimates were suffi-

ciently close to the final parameter estimates that this con-

straint was not needed during the final step.

The final numerical constraint imposed on the minimization

method placed limitations on the size of the adjustment

δ(i+1) = θ(i+1) − θ(i) applied to the parameters after every

iteration. Even after applying the appropriate scaling to the

parameters, large gradients in the loss function can cause LM

algorithm to take large parameter steps. If the loss function

is globally convex, as is the case in linear problems, such

an adjustment in the stepsize is useful since the gradient

will be bigger as the distance from the minimum increases.

This is not the case in nonlinear problems, however, and the

resulting movement far away from the previous initial guess

will not take advantage of the additional information that is

often implicit in the initial guess for the parameters selected

by the user.

This information can be incorporated into the minimization

algorithm by imposing a set of linear constraints on the param-

eters, effectively placing a “rubber band” on the parameters so

that they do not move far in consecutive iterations. This can be

accomplished by adding an additional set of equations to the

system of linearized equations that is solved at each step. If

the system of equations that represents the linearized behavior

of the nonlinear system at the current speed is written by

∇G(θ(i))δ(i+1) = G(θ(i)), then the additional constraint can

be implemented by solving the simultaneous set of equations

[
∇G(θ(i))

I

]

δ(i+1) =

[

G(θ(i))

γ δ(i)

θ0

]

(14)
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This technique is commonly known as regularization [18],

and can be controlled by the size of the constant γ that

multiplies the parameters. This parameter is often set by trial

and error; values of γ which are too large prevent nonlinear

least squares from adjusting the parameters at all, while values

that are too small allow the parameters to change more than is

desired. The implementation of regularization in the nonlinear

least squares algorithm proved to be essential to obtaining

useful parameters from the method.

III. EXPERIMENTAL RESULTS

The two-step method for estimating the parameters of

the induction motor was experimentally tested on a 3-phase

208VAC 1-HP induction machine. This motor was designed to

be used in air-handling units, and was loaded with a double-

duct centrifugal fan with a typical flow rate of approximately

2300 cfm. The motor was also connected directly to the

electric utility, rather than to a regulated AC power supply.

The currents into the stator windings were measured with

a set of LEM LA-55P hall effect current transducers and

the voltages across the stator windings were measured with

LEM LV-25P voltage transducers. An Advantech PCI-1710

data acquisition card was used with a 2GHz Intel Xeon PC

to collect the six channels of data corresponding to the three

stator voltages and currents at a sampling rate of 14.28 kHz

per channel. This relatively high sampling rate was needed to

achieve good resolution in the waveforms during the startup

transient. The motor was connected to the utility through a

set of three solid-state relays. This data acquisition and wiring

configuration is illustrated in Figure 9.

In order to test the performance of the parameter estimation

method, the initial guess of the stator resistance was measured

with a multimeter and determined to be 4.1 Ω. The magnitudes

of the initial guesses of all other parameters were based

upon the magnitudes of the parameters from no-load and

locked rotor tests; the full set of initial guesses θ̂init used
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Fig. 10. Plot of the preprocessed observed and estimated phase A motor
current envelopes.

to experimentally test the parameter estimation method are

provided in the second column of Table I. The parameters of

the motor were then estimated using the method described

above. The parameter estimation method was implemented

in C, and relied particularly upon the GSL libraries [19]

for the implementation of many of the algorithms, such as

the implementation of the Levenberg-Marquardt algorithm.

The speed with which the implemented method was able

to determine the parameters ranged from 30 to 90 seconds,

depending on the distance between the initial guess and the

optimal parameter estimates.

Results using these initial guesses θ̂init to identify the pre-

estimated parameters θ̂pre are illustrated in Figure 10. As

shown by the overlap of the filtered observations and filtered

simulations of the phase A stator current ia,filt, the estimated

dynamics of the motor current are captured reasonably well

in the parameter pre-estimates. The pre-estimated parameters

θ̂pre obtained from this first step are enumerated in the third

column of Table I.

Once these pre-estimates of the motor estimates were ob-

tained, they were input to the second step the parameter

estimation algorithm, which identified the parameters which

minimized the residual between the output of the simulation

and the unfiltered set of current observations θ̂final. As with

the pre-estimation, the full minimization was tested and val-

idated minimizing only against the observations of the stator

current ia. The results of this second step are are illustrated

in Figures 11- 14, and the final parameter estimates are given

in the rightmost column in Table I.

The observed current and the estimated current are plotted

on two different timescales in Figures 11 and 13; the wave-

forms in Figure 11 are zoomed in so that the quality of fit can

be visually evaluated more easily. It is evident from looking

at both sets of plots that the quality of fit is high, as Figure 12

illustrates that the residual iobs− îest(θ̂final) is within 10% of
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Fig. 13. Observed and fitted observed motor currents over a longer time
interval.
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Fig. 14. Residual from ia,fit − ia,obs.

the observed current at all points, and within 5% for most. It

is also notable that the residual is larger during the initial 1.2

seconds of the motor’s operation, and is less than 5% of the

waveform during the steady-state operation of the motor. The

structure of this residual suggests that these parameters are

best-fit parameters and that additional model parameters, such

as those that might describe the fact that the actual resistances

and reactances change slightly over the course of the startup

transient, could be used to further improve the agreement of

the fit to the model. The fact that the residual remains below

10% suggests that these effects are not dominant, however, and

that this approach to modeling the motor behavior is effective.

IV. DISCUSSION

A method was described in this paper that uses a two-step

approach to determine the parameters of an induction machine

Parameter [units] θinit θpre θfinal

Rs [Ω] 4.10 4.10 6.25

Rr [Ω] 1.0 4.19 4.03

Xm [Ω] 10.0 90.72 57.75

Xls [Ω] 1.00 3.78 3.14

Xlr [Ω] 1.00 8.26 7.71

β
[
N·m/(rad/s)2

]
1.00e-04 5.69e-04 4.59e-04

K
[
1/kg·m2

]
10.00 27.57 31.00

TABLE I
FINAL ELECTRICAL AND MECHANICAL PARAMETERS.

with low-quality initial guesses. The method produces param-

eters that accurately characterize the machine’s behavior. This

method was demonstrated to successfully identify parameters



when starting with initial guesses that are as far away from

the final parameters as an order of magnitude. Experimental

results indicate that this method works well, especially in

consideration of measurement noise, unmodeled behavior, and

the voltage distortion present on the utility.

This method could be effectively used for a variety of

applications, such as condition monitoring or the control

of induction machines, as well as the diagnostic analysis

of mechanical loads connected to the induction machine.

Moreover, the sensitivity of this method to the particular

value of the guess is sufficiently small that we suspect that

a grid search [20] could be layered on top of this method

to identify motor and load combinations that are essentially

unknown. Additional research is necessary to implement such

an extension of this method and test this hypothesis.
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