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Abstract

We describe a new method for detecting characteristic bearing fault signatures from accelerom-
eter vibration data based on a probabilistic model of the fault signal generation process. It is
common to assume that single-point bearing defects cause periodic disturbances in bearing vi-
bration signals, but this assumption may not be valid in practice. Our new method is less sensitive
to departures from periodicity, such as fault disturbance amplitude and timing variations, than
standard spectral or autocorrelation-based approaches. We demonstrate the utility of our method
by distinguishing among inner race, outer race, and rolling element faults in a bearing fault test
rig. Our method is significantly better than standard techniques at detecting rolling element (ball)
faults.
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Probabilistic inter-disturbance interval estimation for
bearing fault diagnosis

Kevin W. Wilson, Member, IEEE

Abstract—We describe a new method for detecting character-
istic bearing fault signatures from accelerometer vibration data
based on a probabilistic model of the fault signal generation
process. It is common to assume that single-point bearing defects
cause periodic disturbances in bearing vibration signals, but this
assumption may not be valid in practice. Our new method is less
sensitive to departures from periodicity, such as fault disturbance
amplitude and timing variations, than standard spectral or
autocorrelation-based approaches. We demonstrate the utility of
our method by distinguishing among inner race, outer race, and
rolling element faults in a bearing fault test rig. Our method is
significantly better than standard techniques at detecting rolling
element (ball) faults.

Index Terms—bearing fault classification, condition monitor-
ing, fault diagnosis, vibration

I. INTRODUCTION

BEARING faults are a common failure mode for electri-
cal machines, accounting for over 40% of the failures

observed in induction motors [1]. For this reason, there is
strong interest in being able to detect and diagnose such faults,
often through the analysis of vibration signals from attached
accelerometers [2], [3], [4].

Rolling element bearing faults are typically described by
their location (inner race, outer race, cage, or rolling element)
and by whether they are localized “single-point defects” or
distributed “general roughness” faults [5]. It is commonly
assumed that a single-point bearing defect will cause a periodic
vibrational disturbance in the bearing and surrounding struc-
tures, and that the period at which this disturbance occurs will
be determined by the location of the fault and the geometry
of the bearing.

This assumption that the fault-related disturbance will be
periodic is not always valid, however. It may be invalid if there
is significant bearing slip or if a single-point defect located on
a ball varies over time in how it contacts the inner and outer
races. In situations such as these, both the inter-disturbance
interval and the amplitudes of individual disturbances may
vary. These variations can cause techniques that make strong
assumptions about periodicity to fail.

This paper presents a new method, which is robust to
significant departures from periodicity, for detecting single-
point bearing faults using vibration signals. Section II defines
the problem and reviews previous approaches. Section III
describes our new method, including the simple probabilistic
model on which it is based. Section IV presents experimental
results from our bearing fault test rig, and Section V concludes.

K. Wilson is with the Mitsubishi Electric Research Lab in Cambridge, MA
(email: wilson@merl.com).
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(a) Idealized vibration envelope
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(b) Actual vibration envelope

Fig. 1. (a) An idealized vibration signal envelope, in which a single point
bearing fault generates a periodic impulse-like disturbance. (b) An actual
vibration signal envelope recorded from a bearing with a rolling element (ball)
fault.

II. BACKGROUND

A rolling element bearing consists of an inner race, an outer
race, rolling elements that roll between these two races, and
optionally a cage around these rolling elements. Faults may
occur in any of these parts, and often these faults are single-
point defects such as chips or dents. As these elements move
past each other, these defects come into periodic contact with
other elements in the bearing, and at each contact they can
excite a high frequency resonance in the overall structure [2].
This affects the accelerometer signal, although the effect on the
raw acceleration signal is often overwhelmed by low frequency
vibration from other parts of the motor.

To accentuate the effects of this high-frequency resonance,
which in idealized form can be thought of as a high-frequency
modulated pulse train, a standard approach is to high-pass
filter the signal and then take its envelope [2]. After thus
“demodulating” the signal, one can then analyze the fault-
related contribution to the vibration signal.

Based on the geometry of the bearing elements (inner race
diameter, outer race diameter, number of balls, etc.) and the
shaft rotation rate, it is possible to calculate the characteristic
frequencies with which defects on different bearing com-



ponents will generate these disturbances [6]. Because these
characteristic frequencies are typically different for different
components, analysis of the vibration signal allows us to
distinguish among defects on these different components.

The simplest approach to detecting disturbances at these
frequencies is to look at the energy in the enveloped signal
at these frequencies or to auto-correlate the enveloped signal
and look for peaks at lags corresponding to the characteristic
frequencies. Other more sophisticated approaches are possible
when simple high-pass filtering and enveloping is not suffi-
cient.

Two broad classes of approaches to improving vibration-
based bearing fault diagnosis are under active investigation
in the research community. The first class is to improve the
low-level signal processing techniques used to extract fault-
related signatures. For example, [7] uses bispectral analysis
to simultaneously demodulate the signal and detect energy
at characteristic frequencies. Wavelet-based approaches are
also being investigated, for example in [8] and [9]. These
approaches have the potential to extract additional useful
information from the vibration signal beyond what is extracted
by a simple short-time Fourier transform, and they typically
require no training data. They typically do depend on a
model of the motor to define frequencies of interest for fault
diagnosis, however. The other broad class of approaches is to
apply machine learning techniques to feature vectors derived
from the vibration signal. Popular machine learning techniques
include neural networks, as used, for example, in [10], [11],
and [12], and Hidden Markov Models, as used, for example,
in [13] and [14]. Such approaches have the advantage that
they do not require a motor model from which to derive fault
frequencies of interest. However, they do require training data
and may not generalize well to situations not represented in
the training data.

Most previous approaches have made the fundamental as-
sumption that these fault-related disturbances are periodic,
but this assumption may not always be valid. We have
observed that both the inter-disturbance time intervals and
the amplitudes of individual disturbances can vary greatly in
some cases. Figure 1(a) shows an idealized vibration signal
envelope, while Figure 1(b) shows an actual vibration signal
envelope from a ball-faulted bearing in our test rig. It is
signals like the one in Figure 1(b) that our method is intended
to address. These variations in the vibration envelope are
presumably due to variations in how the ball defect contacts
the inner and outer races and also to the periodic passing of the
faulted ball through the load zone induced by the downward
radial load.

Our method for dealing with these departures from pe-
riodicity requires no training data. We simply analyze the
signal assuming a simple model in which we make two basic
assumptions – first, that although the disturbance amplitudes
may vary, their shapes will remain similar, and second, that
although the inter-disturbance time interval may vary, the
most common inter-disturbance interval (the mode of the
distribution) will still be the one predicted by the geometry
of the bearing. We describe our method in detail in the next
section.

III. METHOD

The goal of our method is to detect the characteristic inter-
disturbance intervals for different types of bearing faults in
spite of some random variation in this interval and in the
amplitudes of individual disturbances. Figure 2 illustrates the
steps of our method with a synthetic example signal.

A. Motivating example
We motivate our approach with a simple model of the

enveloped accelerometer signal, x(t), an example of which
is shown in Figure 2(a). In this model, the impulsive dis-
turbances caused by the bearing defect have a known, fixed
shape (exponentially decaying, in this example) but varying
amplitude (varying according to an exponential distribution
in this example). These disturbances occur at regular time
intervals (8 ms in this example) except when there is bearing
“slip” during that interval, which we assume happens with
probability pslip (pslip = 0.8 in this example). When a “slip”
occurs, the inter-pulse interval is randomly chosen from a
uniform distribution between 0 ms and 16 ms. Finally, there
is exponentially distributed white additive background noise.
We have chosen these particular distributions to yield a signal
that looks qualitatively similar to the real bearing data shown
in Figure 1(b), but our approach does not depend strongly on
these assumed distributions.

If the disturbance amplitude was constant and if pslip was
0, we would have a signal like that shown in Figure 1(a), and
it would be straightforward to detect the fault period either by
looking at the autocorrelation of this signal at a lag of 8 ms
or by computing the signal spectrum and looking the energy
at 125 Hz (= 1/8 ms). This approach fails on our synthetic
example signal, however. Figure 2(e) shows the autocorrelation
of the example signal for lags from 4 ms-12 ms, which
has three large spurious maxima away from the true period
of 8 ms. It fails because the autocorrelation is dominated
by the few largest-amplitude disturbances, even though these
disturbances may suffer from “slip” and thus cause a spurious
peak. Spectrum-based approaches (not shown) would suffer
from similar problems. Intuitively, we would like to decrease
the relative influence of very large disturbances, such as the
one near the 70 ms mark in Figure 2(a), and increase the
relative influence of small disturbances that are still clearly
distinguishable from background noise, such as the one near
the 33 ms mark in Figure 2(a). Our approach seeks to do
precisely that.

B. Algorithm
We set as our goal the estimation of the posterior probability

of a given inter-disturbance interval, pi(τ), for inter-pulse time
interval τ . If we know the probability of a disturbance as a
function of time, pd(t), and if disturbances are independent
across time, then we have (assuming discrete time):

pi(τ) ∝ Pi(τ)
∑

t

pd(t)pd(t − τ) (1)

where Pi(τ) is a prior over possible inter-disturbance intervals,
which in practice we will assume is uniform. In other words,
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Fig. 2. Synthetic example of an accelerometer signal envelope and subsequent
processing steps for our method. To show disturbances at a reasonable
temporal resolution, (a-c) show only the first 80 ms of the signal. However
(d-e) are calculated from a full 500 ms signal to be consistent with our
experimental results. See Section III for details.

the posterior probability of an inter-disturbance interval τ is
proportional to the prior probability times the autocorrelation
of pd(t). To make use of this relationship, we must find an
expression for pd(t).

The optimal filter to detect a fixed waveform in white
noise is to use a matched filter, and this is basis of the
approach we take. In the case of our simulated example, we
know the pulse shape and can therefore apply a true matched
filter. (In practice, we will estimate the disturbance waveform
shape as described in the following subsection and use this
estimate for the matched filter.) Applying this matched filter
to x(t) yields m(t), shown for our example in Figure 2(b).
Note how the matched filtering operation brings out even the
lower-amplitude disturbances from the background noise. To
get pd(t) from m(t), we apply a pointwise transformation
pd(t) = g(m(t)), where g(m(t)) is the posterior probability
of a disturbance at time t after observing m(t):

g(m) =
Pd · p(m|d = 1)

Pd · p(m|d = 1) + (1 − Pd) · p(m|d = 0)
(2)

where Pd is the prior probability of a disturbance, p(m|d = 1)
is the probability of observing a given value of m(t) given
that a disturbance exists at time t, and p(m|d = 0) is the
probability of observing a given value of m(t) given that
no disturbance exists at time t. All of these probabilities are
straightforward to compute for our synthetic example. We
describe our approach for determining these probabilities in
practice in the following subsection.

In practice, a single disturbance will result in large values of
m(t) for a range of t in the neighborhood of the disturbance
time. Because of this, we preserve only large local maxima of
pd(t) and zero out pd(t) in a small neighborhood surrounding
each large local maximum. At the times of moderate to large
disturbances, like the one near 40 ms in Figure 2, pd(t) (shown
in Figure 2(c)) will be nearly 1, and at times with no obvious
disturbances present, for example around 60 ms, pd(t) will
be nearly 0. Small disturbances, such as the one near 47 ms,
may produce borderline matched filter outputs, resulting in an
intermediate value for pd(t).

Figure 2(d) shows pi(t), the result of applying our method
to the example signal. Note the peak at the correct lag
of 8 ms and the absence of spurious peaks and compare
this to the spurious peaks resulting from applying standard
autocorrelation in Figure 2(e).

C. Practicalities
The above approach works well assuming we can accurately

determine the relevant probability distributions. In practice,
these distributions are unknown, so in this section we describe
our heuristics for determining them. Our goal is to do some
simple preprocessing and estimation on a short segment of a
vibrations signal envelope (500 ms in duration in our exper-
iments) that will allow us to apply the technique described
in the previous section to that signal segment. No separate
training data is required.

First we assume that at least a few of the impulsive
disturbances will have large amplitude (in fact, we assume



that the largest-amplitude peaks in the signal will all be due
to fault-related disturbances), and we create a matched filter
by averaging the waveforms in windows around the N highest
peaks in the envelope waveform. (For N = 1, this would
correspond to assuming that the waveform in a small interval
about the global maximum of the signal is a prototypical
example of the disturbance waveform shape.)

We apply this matched filter estimate to get m(t). We
assume that most disturbances will generate noticeable peaks
in m(t), so we use the following heuristic to make a first
guess at which times correspond to disturbances. We start
with the global maximum of m(t) and assume that this
time, t0, is the time of a disturbance. We then assume that
no additional disturbances exist in the region around t0 for
which m(t) > 0.5m(t0) (the “full width half maximum”
region around t0). We subsequently find the largest value
of m(t) outside of this region, at time t1, and do the same
thing. We continue this until the entire signal is covered by
these “full width half maximum” regions, at which point we
have a set, {t0, ..., tM} of assumed disturbance times and a
the corresponding set {m(t0), ...,m(tM )} of matched filter
responses. We set p(m|d = 1) as the maximum likelihood
fit of a log-normal distribution to the {m(t0), ...,m(tM )}.
(We choose the log-normal distribution because it is a simple
parametric form for modeling positive-valued data and has
worked well in practice.)

Given this estimated p(m|d = 1), we fix this distribution
as one component of a two-component mixture of log-normal
distributions, and we use expectation-maximization (EM) [15]
to fit this mixture to the full set of values m(t) (for all time,
not just peak values). After doing EM, we assume the other
log-normal mixture component corresponds to p(m|d = 0).
EM also gives us an estimate of Pd.

Our approach makes a number of assumptions, such as
the assumption of white noise and the assumption that the
probability of a disturbance is independent across time, and
in practice we use heuristic approaches to estimate some of
the relevant distributions. We will show in the next section
that these assumptions and heuristics lead to good results in
practice.

We have implemented our algorithm in Matlab. An overview
of our algorithm, with parameter settings as used for our
results (below), is shown in Algorithm 1.

IV. RESULTS

For our experimental results, we collect data from a “Bear-
ing/Balancing Fault Simulator” from Spectraquest, Inc. This
simulator, pictured in Figure 3, consists of a variable-speed
driven 1/3 horsepower induction motor connected to a 5/8”
shaft. At the center of the shaft is a radially symmetric load
weighing a few kilograms, and at either end of the shaft is a
ball bearing (type ER-10K). The simulator comes with a set
of faulted bearings, and we use the inner race, outer race, and
ball faulted bearings in our experiments. For all experiments,
the faulted bearing was installed on the far end of the shaft
from the motor, and an accelerometer was bolted to the support
structure for this bearing as shown. Our accelerometer has a

Algorithm 1 Overview of the method as implemented.
1) Acquire vibration signal at sampling rate 50 kHz.
2) Band pass from 9-20 kHz and extract signal envelope,

x(t).
3) Define an approximate matched filter for the disturbance

pulse, h(t), by averaging together time-reversed seg-
ments of length 3.2 ms centered on the locations of the
N = 10 largest peaks in x(t).

4) Compute the matched filter output, m(t) = h(t) ∗ x(t).
5) Find {tmaxi

}, the set of times of all local maxima of
m(t), discarding any local maxima that are within the
full-width half-max (FWHM) neighborhood of a larger
local max.

6) Fit a lognormal distribution, parameterized by µ1 and
σ1, to {m(tmaxi

)}, the set of local maximum signal
values. (This lognormal distribution, p(m|d = 1), is
assumed to model m(t) for times when a disturbance
is occurring.)

7) Use expectation-maximization (EM) to fit a mixture of
two lognormal distributions to all of the values {m(t)}.
Keep one of the mixture components, specified by µ1

and σ1, fixed, and allow the EM procedure to modify
the other mixture component, specified by µ0 and σ0.
(p(m|d = 0) is now assumed to be parameterized by µ0

and σ0; it models m(t) for times when no disturbance
is occuring.)

8) Using the lognormal distributions determined in the
previous steps, compute the posterior probability of
disturbance, pd(t) = g(m(t)), with g(m) as defined in
Equation 2. Set pd(t) = 0 for all times not in {tmaxi

}.
9) Compute pi(τ), the probability of inter-disturbance in-

terval τ , as described in Equation 1.

0.2-10kHz bandwidth, and our data was sampled at 50000
samples/second.

We collected data at three different speeds (1250 RPM,
1750 RPM, and 2400 RPM), and with three different types
of faulted bearings (inner race, outer race, and ball-faulted).
Our dataset is roughly 5 minutes of vibration data in total,
and it is roughly evenly balanced across all speeds and fault
types. Figure 4 shows ROC curve results for our technique,
autocorrelation, and spectral energy approaches. Each ROC
curve shows the detection performance for distinguishing one
type of fault from the other two types of faults based on a
measurement at the characteristic fault frequency for the fault
of interest. Each trial consists of 0.5 seconds of data, which is
a very short by some standards. However, rapid and accurate
fault detection can be critical, for example for fast testing
immediately after assembly or for situations where the motor
is only run intermittently.

In Figure 4, “Prob disturbance” is the technique described in
the previous section, and the measurement used for the ROC
curve is pi(τf ), where τf is the period corresponding to the
expected fault frequency as determined by the shaft speed and
fault location. “Autocorrelation” is the autocorrelation of the
vibration envelope evaluated at lag τf . “Spectral Energy” is



Fig. 3. Photograph of our experimental setup. The faulted bearings were
installed on the far end of the shaft, and the accelerometer was bolted to the
top of the far bearing support as shown.

computing a modified periodogram of the vibration envelope
and looking at the energy at frequency Ff = 1/τf . (Because
the overall signal energy can vary significantly as motor speed
changes, in practice we normalize all of our measurements by
the total signal energy. This improves the performance of all
methods.)

All ROC curves are based on the full range of motor speeds,
so to achieve good ROC operating points, a technique must
provide consistent measurement values independent of motor
speed. Figures 4(b) and 4(c) show that detecting outer- and
inner-race faults is relatively easy, and all techniques perform
well. However, as was shown in Figure 1(b), the ball-faulted
bearing signal has large deviations from periodicity, and as
Figure 4(a) shows, only our probabilistic disturbance modeling
technique reliably detects ball faults.

Our unoptimized Matlab implementation of our technique
takes less than one second to process a 0.5 second data
segment on a standard PC, so we expect that an optimized
implementation could easily achieve real-time performance.

V. CONCLUSION

We presented a novel approach for detecting the character-
istic repetition rates of fault-related disturbances in bearings
with single-point defects. Our approach is robust to the signif-
icant deviations from periodicity that can be present in some
practical situations.

Our technique is based on a simple probabilistic model of
fault-related vibration disturbances. We have made a number
of simplifying assumptions to arrive at a practically useful
technique and have shown that these assumptions work well
for data from our experimental setup. We have shown that
our technique, in contrast to other techniques, can differentiate
ball-faults from other types of faults reliably across a range of
motor speeds and given only a short (0.5 second) observation.
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