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Abstract
We apply three alternative statistical learning methods to estimate optical transmission im-
pairments (e.g., noises, chromatic dispersion) from synchronous histograms. Linear regression
yields good accuracy. A more sophisticated locally weighted regression technique performs
better.

OptoElectronics and Communications Conference (OECC) 2009

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2009
201 Broadway, Cambridge, Massachusetts 02139





Optical Performance Monitoring via Histogram: A Data-Driven Approach  
Yonggang Wen1 and Kevin W. Wilson2

1Cisco Systems, San Jose, CA, USA 
2Mitsubishi Electric Research Lab, Cambridge, MA, USA 

Email: eewyg@alum.mit.edu, wilson@merl.com  
(Y. Wen performed this work while at Mitsubishi Electric Research Lab.) 

 
 

Abstract  10Gbps 
RZ 

ASE 
Source

Electrical 
Scope 

Fiber

Variable 
Attenuator

Optical 
Pre-Amp 

Optical 
Line-Amp 

PD Optical 
BPF 

Optical 
BPF 

Electrical
BPF 

 
Fig. 1 Simulation setup: transmitter section, fiber link section and 
receiver section. 

We apply three alternative statistical learning methods to 
estimate optical transmission impairments (e.g., noises, 
chromatic dispersion) from synchronous histograms. Linear 
regression yields good accuracy. A more sophisticated locally 
weighted regression technique performs better.  
 
Introduction 
Optical performance monitoring (OPM) [1-2] will be critical for 
reconfigurable all-optical networks in the future.  Recent 
research has explored performance monitoring techniques that 
would reside on the optical layer of these future all-optical 
networks [1-3].  In this paper, we focus our OPM work on 
quantitative assessment of two optical signal impairments, ASE 
noise level and fiber chromatic dispersion (CD).   

In general, existing research in OPM falls into two categories 
[4]: i) model-based approaches and ii) data-driven approaches.  
The model-based approaches perform diagnosis by comparing 
actual observations with forecasts from an accurate model of the 
system. In contrast, the data-driven approaches view the system 
as a black box that generates characteristic patterns in its output 
data when a particular failure occurs. They “learn” the 
relationship between input events and output diagnosis in 
different ways, for example by using statistical methods. Kilper 
et al. has established the feasibility of applying data-driven 
approaches for OPM via data stream intensity autocorrelation in 
[3]. However, significant effort is needed to develop efficient 
statistical learning algorithms for OPM. In this paper, we 
exploit various data-driven methods to exploit synchronous 
histograms to estimate parameters of optical signal impairment 
(e.g., ASE noise levels and fiber chromatic dispersion 
coefficients). Our simulation and numerical analysis reveal that 
data-driven methods can estimate parameters accurately, while 
avoiding the complexity of developing a model for the optical 
transmission system.  

 
Data-driven Framework and Data Preprocessing 
In this section, we present our data-driven framework for OPM, 
with an objective of accurate assessment of the signal 
impairments in an individual wavelength channel. 

We have built a simulation testbed via the OptSim simulation 
system from RSoft. With it, we generate various sets of raw 
data to demonstrate our idea of applying data-driven approaches 
for investigating how well we can estimate noise levels and 
chromatic dispersion based solely on observations of the 
synchronous histogram. 

Our simulation setup, as shown in Fig. 1, consists of three 
consecutive sections: a transmitter section, an optical link 
section and a receiver section. In the transmitter section, optical 
signals come from two sources: i) an optical source (center 
frequency is 193.1 THz) modulated with a 10Gbps return-to-
zero (RZ) signal (for data transmission) and ii) an amplified 
spontaneous emission (ASE) source (for noise inclusion). The 
spectrum intensity of the ASE source is set to 5dBm/THz in our 

simulation and we vary the attenuation coefficient (i.e., α) of the 
variable attenuator in the range of 10 dB to 20 dB to simulate 
different noise levels. The optical link section consists of a pool 
of SMF fiber (50km) and an in-line optical amplifier (its output 
power is set as 6dBm). We sweep the chromatic dispersion 
coefficient (i.e., D ) of the SMF fiber in the range of 5 to 20 
ps/nm-km to simulate different levels of chromatic dispersion, 
while turning off any other non-linearity in the fiber simulation. 
At the receiver section, the optical signal is filtered at its 
specific wavelength and then is detected with a photodetector, 
whose output is fed into an electrical scope to acquire 
synchronous histograms.  The data we acquire in this simulation 
setup is a set of synchronous histograms under different ASE 
noise attenuation levels and CD levels. 

 Linear Reg kNN LWR 
Noise Attn (dB) 1.06 0.85 0.44 
CD (ps/nm-km) 0.49 0.62 0.23 

 
Table 1: Root-mean-squared error (RMSE) summarizing the results of 
Figures 3.  Results for kNN are for k=3 nearest neighbors. 

The dimensionality of histogram data, i.e. the number of 
bins, is normally very high; in practical systems, it could reach a 
few thousand. Therefore, the first task is to reduce the 
dimensionality of histogram data while extracting as much 
information as possible.  

In optical networks, histograms are usually approximated 
with mixture-of-Gaussians models. As an example, for the 
OOK modulated transmission scheme, the histogram can be 
modeled with a mixture-of-Gaussians model with two 
components (i.e., one center for bit ZERO and the other center 
for bit ONE). Fig. 2 illustrates a few simulated histograms. 
Under this mixture-of-Gaussians model, the crucial parameters 
would be a quadruple ( )0 1 0 1, , ,μ μ σ σ , where iμ  correspond to 

the means and iσ  correspond to the standard deviations.  To 
find the components of this mixture-of-Gaussians model, we 
use the expectation maximization (EM) algorithm [5], which 
converges to a local maximum of the likelihood function.   

In addition, we obtain data from a transmission system with 
no noise and no chromatic dispersion and estimate its center and 
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standard deviation (i.e., 0μ
∗ , 0σ

∗ , 1μ
∗  and 1σ

∗ ) as a benchmark. 
We seek to suppress the effect of specific system configuration 
by normalizing our test cases over the benchmark case 
(i.e., ( )1 1 1 1μ μ μ μ∗ ∗= − , 1 1 1σ σ σ ∗= , ( )0 0 0 0μ μ μ μ∗ ∗= −  and 

0 0 0σ σ σ ∗= ). The normalized quadruple ( )1 01 0, , ,μ μ σ σ  from the 

data pre-processing procedure will be used as the input to the 
feature extraction, as described in the next section.  In practical 
systems, the benchmark data could be obtained during the 
calibration phase of the network design or from a simulation 
testbed of the same transmission system. 
 
Data-driven Performance Monitoring Algorithms 
In this section, we apply three statistical learning algorithms for 
optical performance monitoring: linear regression (LR), nearest 
neighbors (NN), and locally weighted regression (LWR). 
Specifically, we seek to estimate both the noise attenuation 
level and the fiber CD level, based on the 4-D parameter vector 
for our mixture-of-Gaussians model.  Table 1 summarizes our 
results in terms of root-mean-squared error (RMSE), and Fig. 3 
shows the error of each technique as a function of the true noise 
attenuation and CD for the task of noise attenuation level 
estimation.  In this study, we focus on the following parameter 
range: 5 to 20 ps/ns-km for the fiber CD level and 10 to 20 dB 
for the noise attenuation level.  For results for all estimation 
techniques, we use 8-fold cross-validation.   

Linear least squares regression is a standard technique that 
finds the best estimate of the impairment levels (i.e., the noise 
attenuation and the fiber CD) as a linear function of the 4-D 
feature (i.e., ( 1 01 0, , , )μ μ σ σ ).  The k-nearest-neighbors (kNN) 

method [6] estimates the impairment levels from the 4-D feature 
(i.e., ( 1 01 0, , , )μ μ σ σ ) as the average of the k nearest neighbors to 

the query point in the training dataset.  We tried a range of 
possible values for k and found that k=3 nearest neighbors gave 
the best results (lowest error), and therefore we used k=3 for our 
results in Fig. 3 and Table 1.  To equalize the influence of each 
of the 4 dimensions of our input features, we scale each 
dimension such that it has unit variance before computing the 
nearest neighbors. Without doing this, a subset of the 
dimensions will dominate the distance calculation, and 
performance will be much poorer. 

Finally, we apply locally weighted regression to estimate the 
noise attenuation and fiber CD parameters.  Roughly speaking, 
the locally weighted regression technique is a combination of 
linear regression and kNN. To estimate the output value, linear 
regression is applied to a weighted subset of the training dataset 
points that are closest to the query point.  We use the Locfit 
software package [7] to do locally linear regression.  As we did 
for kNN, we scale each dimension to have unit variance before 
applying locally weighted regression. 

In Fig. 3 and Table 1, we compare the performance of the 
three methods. Note that locally weighted regression 
outperforms the other two techniques for both noise attenuation 
and fiber CD estimation. This is not surprising because locally 
weighted regression combines many of the advantages of both 
kNN and linear regression and because we have a reasonable 
amount of data and are working in a relatively low-dimensional 
(4-D) feature space.  

Linear Regression
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Fig. 3 Noise attenuation estimation error surface for linear 
regression, nearest neighbors (k=3), and locally weighted regression 
as a function of true noise attenuation and chromatic dispersion. 
Color scale is in dB.  (Error surface for chromatic dispersion is 
qualitatively similar but not shown due to space constraints.) 
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Fig. 2 Histogram comparison under different system parameters: (a) 
different fiber CD coefficients for a given noise attenuation and (b) 
different noise attenuation values for a given fiber CD coefficient. 

 
Conclusion 
We demonstrated the feasibility of simultaneously estimating 
the noise attenuation level and fiber chromatic dispersion level 
by extracting appropriate features from the synchronous 
histogram data and then applying statistical learning algorithms. 
Our numerical investigation indicates that the estimation is 
quite accurate, especially when using locally weighted 
regression.  
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