

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

http://www.merl.com

Memory-Based Algorithms for Abrupt Change Detection in Sensor
Data Streams

Daniel Nikovski, Ankur Jain

TR2007-024 June 2007

Abstract

This paper describes two novel learning algorithms for abrupt change detection in multivariate sensor data
streams that can be applied when no explicit models of data distributions before and after the change are
available. One of the algorithms, MB-GT, uses average Euclidean distances between pairs of data sets as the
decision variable, and the other, MB-CUSUM, is a direct extension of the CUSUM algorithm to the case when
the unknown probability density functions are estimated by means of kernel density estimates. The algorithms
operate on a sliding memory buffer of the most recent N data readings, and consider all possible splits of that
buffer into two contiguous windows before and after the change. Despite the apparent computational
complexity of O(N^4) of this computation, our proposed algorithmic solutions exploit the structure present in
their respective decision functions and exhibit computational complexity of only O(N^2) and memory
requirement of O(N).

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without
payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the
following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the
authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing
for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright © Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139

Memory-Based Algorithms for Abrupt Change
Detection in Sensor Data Streams

Daniel Nikovski, Member, IEEE and Ankur Jain, Member, IEEE

Abstract— This paper describes two novel learning algorithms
for abrupt change detection in multivariate sensor data streams
that can be applied when no explicit models of data distributions
before and after the change are available. One of the algorithms,
MB − GT, uses average Euclidean distances between pairs of
data sets as the decision variable, and the other, MB − CUSUM,
is a direct extension of the CUSUM algorithm to the case when
the unknown probability density functions are estimated by
means of kernel density estimates. The algorithms operate on
a sliding memory buffer of the most recent N data readings,
and consider all possible splits of that buffer into two contiguous
windows before and after the change. Despite the apparent
computational complexity of O(N4) of this computation, our
proposed algorithmic solutions exploit the structure present in
their respective decision functions and exhibit computational
complexity of only O(N2) and memory requirement of O(N).

I. INTRODUCTION

IN the past, the detailed monitoring of industrial equip-
ment in real-time has been economically feasible typically

for large, expensive, and safety-critical installations such as
nuclear power plants, spaceships, etc. However, the rapid
progress of computer technology, and more specifically the
advent of ubiquitous sensor networks, cheap wireless com-
munications, and powerful embedded processors, has made
it possible to implement equipment condition monitoring
(ECM) technology for much cheaper devices, such as electrical
motors, turbines, power switchgear, as well as for an ever
expanding range of industrial processes, such as oil refining,
food processing, etc.

The resulting explosive increase in the amount of sensor
information that is constantly streaming from industrial sensor
network installations would quickly overwhelm any human
supervisor tasked with processing it. The only viable solution
to the problem of processing this information quickly and
accurately is to develop automated methods for monitoring of
data streams. Whereas it is true that such automated methods
are not likely to reach the competence and versatility of a
well-trained human supervisor, they can still be very effective
and accurate when designed to look for specific events in the
sensor data stream.

One of the most important among these events is a sudden
change in the data stream. Detecting such abrupt changes is not
a trivial problem, because all but the simplest data streams vary
even when no change in the process that generates the data has
occurred. This might be caused either by the natural variability
of the process, e.g. when the data come from a dynamical
system, or to noise that is due to measurement errors, hidden
variables, etc. In such cases, the detection of abrupt changes

D.Nikovski and A.Jain are with Mitsubishi Electric Research Laboratories,
Cambridge, USA.

is done in the statistical sense, i.e., the problem reduces to
detecting a difference between the probability distributions
from which the data are sampled, before and after the change.
In manufacturing, this task is often called Statistical Process
Control (SPC), where the objective is to detect a departure
from the in-control distribution of the data towards some other,
out-of-control distribution.

When the in-control and out-of-control distributions have
known parametric forms and the respective parameters are
known, it has been shown that the CUSUM algorithm orig-
inally due to Page [1] is optimal [2]. However, explicit
modeling of the in-control and all possible out-of-control
distributions is typically a laborious and expensive process,
and might even be intractable. In contrast, what is needed are
methods that can detect abrupt changes only by inspecting the
data streams and reasoning about the probability distributions
implied by the data readings themselves. One possible solution
that we are proposing in this paper, employs memory-based
machine learning methods that learn those distributions from
data.

Section II reviews several existing methods for abrupt
change detection (ACD) including the CUSUM algorithm
and its variants, describes several recent algorithms based on
machine learning, and discusses their shortcomings. Section
III describes the two new memory-based ACD methods that
we propose, and discusses computational schemes to reduce
their computational complexity from O(N 4) if implemented
directly, to only O(N2). Section IV provides an experimental
comparison of the two new algorithms with several alternative
methods. Finally, section V discusses several ideas for even
further reduction of the computational complexity of the
methods, and possible increase in their accuracy.

II. METHODS FOR ABRUPT CHANGE DETECTION

If we denote with xt the d-dimensional data vector from
the sensor data stream at time instant t, the problem of
abrupt change detection is to determine whether such a change
has occurred at or before the current time t. An important
assumption for this problem is that the change is assumed to
be permanent, i.e. once it has occurred, all subsequent readings
come from the new distribution. (This is the typical situation
for industrial equipment when the change is destructive, e.g.
burnout, motor failure, etc.) All samples before the change
are assumed to be independent and identically distributed
(i.i.d.) random variables sampled from the distribution p0(x);
similarly, all samples after the change are assumed to be i.i.d.
variables sampled from the distribution p1(x).

For cases when p0(x) and p1(x) are known, Page proposed
the CUSUM (CUmulative SUM) method that accumulates

the log-likelihood of the current reading with respect to the
two distributions, and makes a decision based on an auxiliary
variable gt = St −mt for mt = min1≤j≤t Sj , St =

∑t

i=1 si,
and si = log p1(xt)

p0(xt)
. A change is declared to have occurred if

gt > h for a suitably chosen threshold h, and this decision can
be shown to be optimal with respect to maximizing detection
probability for a given false-positive rate [2].

However, the CUSUM algorithm has the significant dis-
advantage that both distributions p0(x) and p1(x) must be
known. Specifying an accurate probability distribution p0(x)
for the normal operation of industrial equipment is typically
hard and laborious even for the very engineers who designed
the equipment; specifying a possible distribution p1(x) for
the out-of-control case might be outright impossible. What is
more, even the correct parametric forms for these distributions
might not be available.

These limitations of CUSUM have spurred extensive re-
search on alternative methods for ACD that are more data
driven and do not rely on pre-specified distributions. An im-
portant direction of research is to use non-parametric statistics
such as rank statistics, Kolmogorov-Smirnov, etc. [3]. Another
line, to which this paper also belongs, has focused on ACD
methods based on machine learning. The fundamental idea is
to learn (fit) two probability distributions from data samples
before and after the hypothesized change point, and then
test for differences between the two distributions, often using
information-theoretic distance measures such as Kullback-
Leibler divergence, Rényi divergence, etc. [4].

The first main problem when using such methods is how
to learn the two distributions from data. When the two
distributions are known to be Gaussian, the sample means
and variances for the two windows can be computed and
the two distributions compared using Student’s t-statistic. The
much more important case is when the two probability density
functions (pdfs) of the distributions are not Gaussian — for ex-
ample, when they are multi-modal due to the system jumping
between several distinct modes. Some popular methods, such
as Gaussian Mixture Models, that are otherwise an excellent
choice for modeling multi-modal distributions, are fairly poor
solutions for this particular problem, because they are paramet-
ric and their fitting requires multiple iterative adjustments of
the respective parameters [5]. This is prohibitively expensive
when considering many possible change points. A much better
alternative is to use memory-based methods, such as Parzen’s
kernel density estimate, a.k.a. Nadaraya-Watson estimate of a
probability density function [5]. In this method, the probability
density p(x) is represented as a normalized sum of kernel
values:

p(x) =
1

n

n∑
i=1

w(x − xi) (1)

where w is a suitably chosen kernel, and xi, i = 1, n is
a sample of data points from the distribution to be modeled.
Popular choices for the kernel are Gaussian, tricubic, etc. [5].

The second main problem is how to compare the two
distributions, once they have been fit from data. Some popular
methods employ information-theoretic distance measures, such

as Kullback-Leibler (KL) divergence:

DKL(p0 ‖ p1) =

∫ ∫
. . .

∫
x∈Ω

p0(x) log
p0(x)

p1(x)
dx

The main difficulty when using KL divergence is the need
to integrate over the entire domain Ω of x — this can be
prohibitively expensive even in one-dimensional domains, and
might be impossible in multivariate cases. Using other pop-
ular information-theoretic distance measures, such as Rényi
divergence, Jensen-Shannon distance, Bregman divergence,
Hellinger-Matsushita-Bhattacharya distance, etc., leads to sim-
ilar integration-related difficulties.

As a result, much research has focused on approximate
computation of these distances. For example, Guha et al.
[4] describe several polynomial-time approximation schemes
(PTAS) that can compute approximations to most of the
above distances in polynomial time. While valuable from a
theoretical point of view, similar PTAS methods are not very
likely to result in practical algorithms that can be used for
monitoring of actual industrial equipment. In contrast, the
algorithms proposed in the next section have very favorable
low-order polynomial complexity without having to resort to
approximations.

The third main problem in algorithms that are based on
machine learning is determining the size of the two windows
from which the two pdfs are estimated. On one hand, the
larger the window size, the better the asymptotic fit to the
true pdf from which the data were sampled. On the other hand,
when an actual change in distribution occurs, if the size of the
window is large, the new data starts to affect the post-change
distribution very slowly, resulting in longer detection times.

One possible way to deal with this contradiction is to
consider windows of varying sizes, both before and after the
change point, such that the sum of the two window sizes does
not exceed the length N of a sufficiently large buffer of stream
data kept in memory. This would allow both fast reaction to
more drastic changes, for post-change windows of length as
small as one data reading, as well as sensitivity to more subtle
changes, if they can only be detected from distributions learned
from larger windows. While a direct implementation of this
idea typically results in increase of computational complexity
to O(N4), we will demonstrate efficient implementations of
the algorithms proposed below that eliminate this increase in
complexity.

III. MEMORY-BASED ABRUPT CHANGE DETECTION

In this section, we propose two algorithms for abrupt change
detection: one is based on Euclidean distances between two
sets of samples, while the other one is an extension of the
CUSUM algorithm to the case when both the pre-change and
post-change distributions are modeled via Parzen kernel den-
sity estimates. Both algorithms work on variable sizes of the
two windows, considering all possible partitions of a memory
buffer of size N of past data readings. While vastly different
in their motivation, derivation, and probabilistic assumptions,
the two algorithms do share a common computational structure
that can be exploited to significantly reduce the computational

X2 Xi Xj XN

Time

γ
t
j,N

γ
t
i,j−1

Γt

X1

Fig. 1. A snapshot of a sliding window and its probable sub-windows.

cost of considering all possible partitions of the memory
buffer.

Both algorithms work on a sliding memory buffer Γt

which contains the last N readings, always renumbered for
convenience from x1 to xN , such that xN is the latest recorded
reading. A change-detection algorithm α has to compute a
quantitative figure of merit Υα

t , which is in proportion to the
possibility that a change has occurred within the span of the
current buffer in memory. In particular, Υα

t can be, but is not
limited to, a distance measure between two sub-windows of
the current memory buffer.

In contrast to existing algorithms that simply split the buffer
into two equal parts and test for difference between them, the
two algorithms described below consider all possible pairs of
indices (i, j), such that 1 ≤ i < j ≤ N , that split Γt into two
adjacent sub-windows, γt

i,j−1 and γt
j,N (as shown in Figure 1).

Here γt
p,q = {xp, . . . ,xq}.

The index i defines the beginning of the first window, and
the index j defines the beginning of the second window (and,
respectively, the hypothesized change point). The end of the
first window has index j − 1, ensuring contiguity of the two
windows, whereas the end of the second window is always
the latest reading, xN . Under this scheme, the two windows
might have unequal lengths, and might even consist of a single
data sample. Under this setting, if a separate figure of merit
Υα

t (i, j) is computed for each possible pair subject to the
listed constraints, the overall figure of merit is the maximum
over all splits: Υα

t = max1≤i<j≤N Υα
t (i, j). The modeling

challenge, then, is which figure of merit Υα
t to use, while the

computational challenge is how to compute it efficiently for
each incoming data sample xt.

A. A Memory-Based Graph Theoretic Algorithm
One very straightforward solution to the problem of comput-

ing the distance between two distributions indirectly specified
by means of two sample sets is to compute the average
distance between the samples themselves. Since each sample
is a point in a multi-dimensional Euclidean space, a natural
distance measure between pairs of points xk and xl is their
Euclidean distance dk,l

.
= ‖xk − xl‖. For a particular split

defined by the index pair (i, j) specified as above, we can
compute the average distance between the two as

Ci,j =

∑j−1
k=i

∑N

l=j dk,l

(j − i)(N − j + 1)

We will call the corresponding change detection algorithm
MB − GT (Memory-Based Graph Theoretic). Its overall figure

of merit ΥMB−GT

t can be computed as described above:
ΥMB−GT

t = max1≤i<j≤N Ci,j . Since computing each Ci,j is
of complexity of O(N2), and there are O(N2) such terms to
be considered, the overall complexity of computing ΥMB−GT

t

seems to be O(N4), if implemented directly. This complexity
is unacceptable for practical applications.

However, the computation of individual Ci,j terms has cer-
tain redundancy and repetitive structure that can be exploited
to bring the computational complexity of MB − GT back down
to O(N2). If we define

C ′
i,j

.
=

j−1∑
k=i

N∑
l=j

dk,l βi,j
.
=

N∑
l=j

di,l,

one can verify that the following recurrent relationships
hold: βi,j−1 = βi,j + di,j−1, with βi,N+1 = 0, and C ′

i−1,j =
C ′

i,j + βi−1,j , with C ′
j,j = 0 for all 1 ≤ j ≤ N . These recur-

rences suggest the following efficient computational algorithm.
If the values C ′

i,j are placed in a tableau that is conceptually
similar to a matrix, this matrix would be upper triangular due
to the constraint i < j. Computation can start with the bottom
row of this matrix that has a single element C ′

N,N which is
zero by definition. For each row 1 ≤ i < N above the last
one, proceeding from bottom to top, two steps are performed:

1) All values βi,j are computed recurrently from their
immediate neighbor to the right, proceeding right to left,
and using the recurrence βi,j−1 = βi,j + di,j−1.

2) All values C ′
i,j are computed from the respective values

βi,j and the values C ′
i+1,j in the row immediately below

the current one, using the recurrence C ′
i,j = C ′

i+1,j +
βi,j .

Computing ΥMB−GT

t can be done simultaneously with the
computation of the individual terms C ′

i,j , since it involves
only normalization and maximization. For this reason, it is
not necessary to keep all values βi,j and C ′

i,j in memory; it
suffices to keep a buffer of size N elements for the current
row i of values βi,j , and two buffers of the same size for C ′

i,j

and C ′
i+1,j . Thus, the memory requirement of this algorithm

is only O(N). As for its computational complexity, the com-
putation of βi,j and C ′

i,j for each row i is only of O(N), and
since there are N such rows, the overall complexity is only
O(N2), as opposed to O(N4) for a naı̈ve implementation.

B. A Memory-Based CUSUM Algorithm
Unlike MB − GT, the second algorithm we propose,

MB − CUSUM, has probabilistic foundations identical to that
of the original CUSUM algorithm, which potentially allows
it to achieve optimal change detection under certain modeling
conditions. At the same time, despite its very different theo-
retical foundation, MB − CUSUM has similar computational
structure to MB − GT, and we will demonstrate how this
structure can be leveraged to achieve the same significant
improvements in computational complexity.

Following the derivation of CUSUM in [2], we consider
the following hypotheses about a possible change within the
current buffer of N readings kept in memory:

Hi,0: xk ∼ p0 for i ≤ k ≤ N (2)
1 ≤ i < j ≤ N, Hij : xk ∼ p0 for i ≤ k ≤ j − 1 (3)

xl ∼ p1 for j ≤ l ≤ N (4)

Here we are considering the null hypotheses Hi,0 that no
change has occurred while the latest N − i + 1 sample were
collected, vs. multiple hypotheses Hi,j that such a change has
occurred. Compared to standard CUSUM, by introducing the
starting index i, we are expanding the set of hypotheses to
be tested to those that do not necessarily use all N samples
in the window. According to the Neyman-Pearson lemma, the
most powerful test that we can perform when testing each
particular hypothesis Hi,j vs. Hi,0 (i.e., the test that has the
highest probability of rejecting a false null hypothesis), is the
likelihood ratio

Λij =

∏j−1
k=i p0(xk) ·

∏N

l=j p1(xl)∏N

k=i p0(xk)

For convenience, the log-likelihood ratio Sij = log(Λij) is
commonly used. In our algorithm, we replace the true pdfs
p0 and p1 with their kernel density estimates, as described by
Equation 1, to result in

Si,j =
N∑

l=j

log

1
N−j+1

∑N

k=j wl,k

1
j−i

∑j−1
k=i wl,k

, wl,k
.
= w(xl − xk) (5)

Here wl,k is a kernel weight for the pair of samples
(xl,xk), and it also holds that wl,k = w(dl,k). By using
the maximum likelihood principle, the figure of merit for this
algorithm will be ΥMB−CUSUM

t = max1≤i<j≤N Si,j . Again, a
direct computation of ΥMB−CUSUM

t would have computational
complexity of O(N4).

However, ΥMB−CUSUM

t has a similar structure to ΥMB−GT

t

that can again be exploited to reduce its computational com-
plexity. Again, we can conceptually organize the values of Si,j

in a tableau, and define the following auxiliary variables:

µl
j

.
=

N∑
k=j

wl,k νl
i,j

.
=

j−1∑
k=i

wl,k. (6)

Although there appear to be O(N 3) νl
i,j terms to be

computed, the recurrent re-formulation of Equation 5

Si,j = Si,j+1 +log µj
j − log νj

i,j +log(j− i)− log(N − j +1)
(7)

can convince us that not all of them are needed. By further
defining µ′

j

.
= µj

j , and ν′
i,j

.
= νj

i,j , we can use the following
equations as a basis for an efficient algorithm:

µ′
j =

N∑
k=j

wj,k ν′
i,j = ν′

i+1,j + wj,i. (8)

Note that only the one for ν ′
i,j happens to be recurrent; the

other, for µ′
j , is computed directly. These equations suggest

the following efficient algorithm:

S1: Compute µ′
j for j = 1, N directly, per Equation 8.

This computation takes O(N 2), but the results can
be stored in O(N) space.

S2: For each row i = N, 1 of the matrix Si,j , starting
from the bottom row i = N and moving upwards to
the first row i = 1, perform the following two steps:

S2.1: For each value of j between i + 1 and N ,
compute ν′

i,j from the corresponding ν ′
i+1,j

in the row below, and wj,i, per Equation 8.
S2.2: For each value of j between N and i + 1,

compute Si,j from the value Si,j+1 im-
mediately to the right, using the equation
Si,j = Si,j+1+log µ′

j−log ν′
i,j+log(j−i)−

log(N−j+1), starting with Si,N+1 = 0 for
all i = 1, N . The computation in this step
proceeds strictly right to left (j = N, i+1).

IV. EXPERIMENTAL VERIFICATION OF MB − GT AND
MB − CUSUM

We now present an experimental comparison of the two
algorithms proposed above with several existing methods. In
all experiments, we generate a sequence of experimental data
of length W , such that the first W/2 data points come from a
distribution p0, and the second W/2 come from a distribution
p1. All change detection algorithms process the data points
on-line, one by one as they arrive, and their objective is to
decide whether a change has occurred at or before the current
point in time. If a change has occurred, they output a decision
variable ŷt = 1; if not, ŷt = 0. All algorithms assume that only
one change will occur in the data stream, and this change is
persistent. Under this assumption, which we call the single-
change hypothesis, a positive decision persists for all future
time moments, and the final sequence of decisions is a step
function ŷt = 0 for 1 ≤ t < tdet, ŷt = 1 for tdet ≤ t ≤ W ,
where tdet is the first time when a change was detected. The
ground truth yt for the decision variable is also a step function
yt = 0 for 1 ≤ t ≤ W/2, yt = 1 for W/2 < t ≤ W , where
the step occurs precisely at the time of change t = W/2 + 1.
Detection accuracy is determined by how close the produced
decisions and the ground truth coincide.

Following the current standards for experimental evaluation
of classifiers in the machine learning community, we report
the entire receiver operating characteristic (ROC) curves for
our algorithms [6]. Since the horizontal axis of an ROC curve
corresponds to the false positive rate, and the vertical axis
corresponds to the true positive rate of detection, the ROC
curves measure directly the statistical power of the respective
algorithms for all possible decision thresholds. In order to
eliminate statistical variability and obtain asymptotically ac-
curate ROC curves, we average them over 100 identical runs
for each experiment reported below.

The two new algorithms MB − GT and MB − CUSUM

were compared against several known change detection al-
gorithms. Since the actual distributions before and after the
change are known, we can employ the classical CUSUM algo-
rithm as the gold standard for optimal detection. An algorithm
that uses the t-statistic between the two windows as its figure

of merit is denoted by MB − TSTAT. Similarly, an algorithm
that uses the Kolmogorov-Smirnov statistic between the two
windows as its figure of merit is denoted by MB − KS. The
MB − KS algorithm is also very expensive (O(N 3 log N)),
due to the need to sort the data in the buffer. Apart from
comparing the relative performance of these algorithms with
respect to CUSUM, we also investigated several additional
questions:

• How does the magnitude of the difference between the
distributions p0 and p1 affect performance?

• How does the shape of the distribution affect the relative
performance of the algorithms, especially of those that
assume a specific parametric form?

• Does using all possible splits (i, j) of the memory buffer
result in better performance with respect to equal sizes
(j − i = N − j + 1)? (The former case is denoted with a
suffix -UNEQ, and the latter case with suffix -EQ in the
graphs below.)

• Is there a benefit to limiting the size of the smallest win-
dow that the memory-based algorithms would consider?
Intuitively, considering kernel density estimates from very
few samples (e.g. one or two) would result in imprecise
density models.

A. Gaussian distributions
The first set of experiments used Gaussian distributions

before and after the change. The size of the memory buffer
was N = 100. In all cases, the mean before the change
was 0, while the mean after the change took on values in
{0.5, 1.0, 1.5, 2.5}. The standard deviation before and after
the change was equal, and in experiments took on values in
{0.2, 0.4, 0.8, 1.0}. As expected, for large ratios between the
mean change and the standard deviation of the distributions,
all algorithms perform well; practically all of them achieve
100% detection rate for zero false positive rate. Conversely, the
hardest case, with the worst performance for the algorithms,
is when this ratio is minimal — in this experiment, this
happens when the jump in means is only 0.5 and the standard
deviation is 1.0. This case is shown in Figure 2. It can be
seen that even the omniscient CUSUM algorithm that knows
the exact distributions that generated the data cannot achieve
100% accuracy in all cases. From the learning algorithms,
for low false positive rates, the MB − KS algorithm performs
best; for higher false positive rates, MB − CUSUM is the
best, and it even approaches the accuracy of omniscient
CUSUM. MB − CUSUM also clearly dominates MB − GT

and MB − TSTAT in all cases. Comparing the versions that
use equal and unequal windows sizes, we can see that the
latter is always better; this difference is most pronounced
for the MB − CUSUM algorithm. Inspection of the remaining
15 experimental graphs (not shown here for lack of space)
confirms these conclusions.

B. Effect of the size of memory buffer and data dimensionality
In the next set of experiments, we varied the size of the

memory buffer N ∈ {50, 100, 200, 250}. We found only
negligible change in performance when the size of the buffer

Fig. 2. The most difficult test case for Gaussian distributions: the change in
means is equal to half of the standard deviation.

was reduced; this is probably due to the fact that all of these
values are sufficient to estimate well a single one dimensional
Gaussian pdf. (The only more noticeable degradation occurred
for N = 50, and only for MB − CUSUM.)

Another set of experiments tested whether the algo-
rithms can handle multivariate readings well. MB − GT and
MB − CUSUM do not need any modifications. MB − GT is
based on Euclidean distances, which are defined identically for
any number of dimensions, whereas MB − CUSUM simply
has to use multi-dimensional kernels — for the case of
Gaussian kernels, the extension to the multivariate case is
straightforward. In contrast, extending the t-test to multivariate
data is not trivial. One possible generalization is Hotelling’s T 2

statistic; another one is to compute individual t-values along
each dimension, and take their norm as a figure of merit. The
latter approach was used in our experiments (using L2 norm),
since it avoids the computation of a pooled covariance matrix
for each pair of sub-windows. Finally, extending the MB − KS

algorithm to arbitrary multivariate data is not possible, because
the Kolmogorov-Smirnov statistic is defined only for univari-
ate data, and only partial extensions to two-dimensional data
exist.

As a result, the four algorithms CUSUM, MB − GT,
MB − CUSUM, and MB − TSTAT were compared in a series
of experiments where the dimensionality of the data was cho-
sen from the set {2, 4, 8, 16}, and the ratio of mean change to
standard variance was either 0.5 or 1.0. Although the specific
performance in each case was different, the same overall
behavior and relative ranking of the algorithms was observed:
MB − TSTAT had the worse overall performance; MB − GT

had a slightly better performance than MB − TSTAT in seven
out of eight cases; MB − CUSUM had a significantly better
performance than both MB − TSTAT and MB − GT in all
cases, but still not as good as the omniscient CUSUM. A
representative hard case of sixteen-dimensional data and a
change in means equal to half a standard deviation is shown
in Figure 3: the ROC curve for MB − CUSUM lies approxi-
mately halfway between that of omniscient CUSUM, on one
hand, and MB − TSTAT and MB − GT, on the other.

Fig. 3. For 16-dimensional data, MB − CUSUM substantially outperforms
MB − TSTAT and MB − GT.

Fig. 4. For exponential distributions, the relative performance of the
algorithms remains the same.

C. Exponential distributions
In a final set of experiments, the effect of the parametric

shape of the distribution was verified. The distribution before
the change was exponential with mean λ0, varied so that
λ0 ∈ {0.25, 0.75}, while the distribution after the change
was also exponential, but with mean λ1, varied so that λ1 ∈
{0.25, 0.5, 0.75, 1.0, 1.25}. (Cases when λ0 = λ1 were not
tested.) One hard representative case, when the two means are
fairly close (λ0 = 0.25, λ1 = 0.5), is shown in Figure 4. It
can be seen that detecting the change is trivial for the om-
niscient CUSUM algorithm, which is supplied with the exact
distributions p0 and p1. The two algorithms MB − CUSUM

and MB − GT perform relatively well, while the Gaussian
assumption built into the MB − TSTAT algorithm results in
much worse performance.

V. CONCLUSION

Two novel fast memory-based algorithms for abrupt change
detection were proposed, and their performance versus known
methods for change detection was tested. Experimental veri-
fication under various conditions such as type of distribution,

magnitude of change, data dimensionality, and memory buffer
size confirmed their good performance. Between the two,
the memory-based extension to CUSUM, MB − CUSUM,
outperformed MB − GT in practically all cases, which can
be attributed to its probabilistic foundation and the optimal-
ity guarantees for its non-learning predecessor, the original
CUSUM algorithm. The only algorithm that outperformed
MB − CUSUM was the one using the Kolmogorov-Smirnov
statistic; however, this algorithm is very expensive compu-
tationally (O(N3 log N)), and inherently limited to one- or
at most two-dimensional data. In contrast, MB − CUSUM is
fast (O(N2)), and easily handles multivariate data; its accu-
racy even increases on higher-dimensional data. In addition,
MB − CUSUM is not too sensitive to the size of memory-
buffer. In addition, MB − CUSUM and MB − GT are non-
parametric memory-based algorithms that can work on all
kinds of distributions, whereas using t-tests is limited to those
that do not depart too much from Gaussian.

The proposed algorithmic solutions reduce the complexity
of computing their respective figures of merit from O(N 4) to
O(N2); the usefulness of these solutions is much reinforced
by the experimental verification that considering all possible
splits of the memory buffer does make a big difference when
compared to the case when only equal splits are used. This
is a substantial improvement over the current practice in the
field, where typically only one single split into two windows
of size N/2 is considered.

As to whether further improvements in computational com-
plexity are possible, one possibility is to amortize compu-
tation across time periods. Currently, computation for each
time period t starts from scratch, and one might imagine an
alternative scheme where the statistics Ci,j , respectively Si,j ,
are computed from their counterpart values in previous time
slices. However, since these statistics are placed in a tableau
of size O(N2), retaining these tableaux in their entirety would
destroy the O(N) memory property of the algorithms.

Another direction to consider is the use of more advanced
memory-based learning algorithms, for example ones that
rely on data structures such as kd-trees, adaptive rectangular
trees, ball-trees, etc. [7]. These methods have been used very
effectively in memory-based learning, especially for lower-
dimensional data, and are suitable candidates for future use
in abrupt change detection algorithms.

REFERENCES

[1] E.S. Page, Continuous inspection schemes, in Biometrika, vol.41, pp.100–
115, 1954.

[2] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory
and Application, Englewood Cliffs, NJ: Prentice Hall, 1993.

[3] B. E. Brodsky and B. S. Darkhovsky, Nonparametric Methods in Change-
Point Problems, Kluwer, 1991.

[4] S. Guha, A. McGregor, and S. Venkatasubramanian, Streaming and sub-
linear approximation of entropy and information distances, in Proceedings
of SODA’06, pp. 733–742, ACM Press, 2006.

[5] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical
Learning, Springer, 2001.

[6] F. J. Provost and T. Fawcett, Analysis and visualization of classifier
performance: comparison under imprecise class and cost distributions,
in Proceedings of KDD’97, pp.43–48, AAAI Press, 1997.

[7] C. G. Atkeson, A. W. Moore, and S. Schaal, Locally weighted learning,
in Artificial Intelligence Review, vol.11, no.1-5, pp.11–73, 1997.

