
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Shift-Invariant Probabilistic Latent
Component Analysis

Paris Smaragdis, Bhiksha Raj

TR2007-009 December 2007

Abstract

In this paper we present a model which can decompose a probability densities or count data into
a set of shift invariant components. We begin by introducing a regular latent variable model and
subsequently extend it to deal with shift invariance in order to model more complex inputs. We
develop an expectation maximization algorithm for estimating components and present various
results on challenging real-world data. We show that this approach is a probabilistic gener-
alization of well known algorithms such as Non-Negative Matrix Factorization and multi-way
decompositions, and discuss its advantages over such approaches.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2007
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Shift-Invariant Probabilistic Latent Component Analysis

Paris Smaragdis paris@adobe.com

Adobe Systems Inc.

Newton, MA 02466, USA

Bhiksha Raj bhiksha@merl.com

Mitsubishi Electric Research Laboratories

Cambridge, MA 02139, USA

Abstract

In this paper we present a model which can decompose a probability densities or count
data into a set of shift invariant components. We begin by introducing a regular latent
variable model and subsequently extend it to deal with shift invariance in order to model
more complex inputs. We develop an expectation maximization algorithm for estimating
components and present various results on challenging real-world data. We show that this
approach is a probabilistic generalization of well known algorithms such as Non-Negative
Matrix Factorization and multi-way decompositions, and discuss its advantages over such
approaches.

Keywords: Convolutive bases, shift invariance, non-negative, factorization, latent de-
composition, positive deconvolution

1. Introduction

Component-wise decompositions have long enjoyed a ubiquitous use in machine learning
problems. It is customary to preprocess data using a component analysis in order to ei-
ther perform dimensionality reduction, extract features, or discover something about the
data’s structure. Popular approaches such as Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) are frequently employed for various tasks such
as feature discovery or object extraction and their statistical properties have made them
indispensable tools for machine learning applications. More recently the introduction of
Positive Matrix Factorization (12) (more prevalently known in the machine learning com-
munity as Non-Negative Matrix Factorization (5)) introduced a new desirable property in
component decompositions, that of non-negativity. Non-negativity has proven to be a very
valuable property for researchers working with positive only data and its use has since flour-
ished especially for audio and image decompositions where non-negative representations are
prevalent. For such representations a non-negative decomposition is advantageous as com-
pared to alternatives like PCA or ICA, since it discovers non-negative elements which can be
easily interpreted and are often perceptually meaningful decompositions. In contrast meth-
ods not using non-negativity are bound to discover bases that contain negative elements,
and then employ cross-cancellation between them in order to approximate the input. Such
components are hard to interpret in a positive only data framework and are often used for
their statistical properties and not for the insight they provide. NMF and its subsequent
mutations have been found to provide meaningful components on a variety of data types
such as image (5) and audio magnitude spectra data (13). The downside of NMF however
is that it is defined in a purely non-statistical framework which prohibits it to be applied
in various probabilistic frameworks.

c©2007 Paris Smaragdis and Bhiksha Raj.

Smaragdis and Raj

In this paper we will present a series of decompositions, very much alike the aforemen-
tioned techniques, that address the issues raised in the previous section. Our approach
operates on probability densities, or count data, making it inherently non-negative and ap-
propriate for a variety of applications where we observe either histograms, or energy signals.
Due to the nature of the space we operate in, the results of the proposed decompositions can
be used seamlessly in a learning environment due to the fact that all the derived variables
can be linked to model likelihoods. This makes this approach ideal for decompositions which
in later stages will feed into a classification, or clustering module where probabilistic inter-
pretations of the inputs are strongly desired. In addition to providing this framework, we
also show that this series of decompositions are numerically identical to NMF at their sim-
plest level, but can easily surpass it by allowing decompositions of arbitrary dimensionality
(tensor decompositions), as well as properties of shift-invariance.

The remainder of this paper is organized as follow. In section 2 we will cover the
Probabilistic Latent Component Analysis (PLCA) which is the basic model which we will
expand. In section 3 we will gradually introduce shift invariant extensions and in section 4
we will evaluate the analysis method in real-world audio and image data. We will conclude
with a discussion section where we will describe relationships of our approach to past work
and relative concepts.

2. Probabilistic Latent Component Analysis

In this section we present the model for Probabilistic Latent Component Analysis (PLCA).
We will formulate it, present an Expectation-Maximization (EM) algorithm variant to com-
pute the parameters of the model and present some simulations on toy problems.

The model that we will work with on this section is defined as:

P (x) =
∑

z

P (z)
∏N

j=1P (xj |z) (1)

where P (x) is an N -dimensional distribution of the random variable x = x1, x2, ..., xN .
The z is a latent variable, and the P (xj |z) are one dimensional distributions. Effectively
this model represents a mixture of marginal distribution products to approximate an N -
dimensional distribution. The marginal distributions themselves are dependent on a latent
variable z. The objective of this analysis is to find out the underlying structure of a
probability distribution by using this latent model. This is done by estimating both P (xj |z)
and P (z) from an observed P (x).

The estimation of the marginals P (xj |z) is performed using a variant of the EM algo-
rithm which is described in more detail in appendix B. In short this algorithm contains an
expectation and a maximization step which we alternate between in an iterative manner.
In the expectation step we estimate the ‘contribution’ of the latent variable z:

R(x, z) =
P (z)

∏N
j=1P (xj |z)

∑

z′ P (z′)
∏N

j=1P (xj |z
′)

(2)

and in a maximization step we re-estimate the marginals using the above weighting to
obtain a new and more accurate estimate:

2

Shift-Invariant Probabilistic Latent Component Analysis

P (z) =

∫

P (x)R(x, z)dx (3)

P (xj |z) =

∫

· · ·
∫

P (x)R(x, z)dxk ,∀k 6= j

P (z)
(4)

P (xj |z) will contain a latent marginal distribution across the dimension of variable xj ,
relating to the latent variable z, and P (z) will contain the prior of that latent variable.
Repeating the above steps in an alternating manner multiple times produces a converging
solution for the marginals and the latent variable priors.

This above process can also be adapted to work for a discrete x and z (or all possible
combinations), as described in appendix B. This process will also work if the provided input
P (x) is an un-normalized histogram as opposed to a density. The only added measure we
need to take in this case is to normalize each P (xj |z) to integrate (or sum) to one in every
iteration to ensure that it corresponds to a true marginal distribution.

We now illustrate the use of this decomposition using a toy problem. Assume that we
observe a two dimensional random variable composed of three 2-d Gaussians with diagonal
covariances:

x ∼
1

2
N

([

1
−1

]

,

[

0.4 0
0 0.4

])

+
1

4
N

([

0
2

]

,

[

0.7 0
0 0.1

])

+
1

4
N

([

−2
1

]

,

[

0.1 0
0 0.4

])

(5)

The distribution P (x) of this variable is shown in figure 1 in the lower left panel1. If
we perform the analysis we’ve just described on this distribution we would hope to obtain
three sets of marginals that describe each of the three Gaussians. To try this out we sample
P (x) and operate in the discrete domain using the discrete forms of the above equations as
shown in appendix B (equations 36,37,38). The latent variable z is also discretized so as to
assume only three values (one for each component we desire to extract).

Indeed after training we obtain the expected results. The results after 40 iterations are
shown in the top panels in figure 1. The leftmost presents the priors P (zi), the middle one
presents the marginals from the up-down dimension P (x2, |zi), and the rightmost one the
marginals from the left-right dimension P (x1, |zi). The bottom right plot is the approxi-
mation to P (x) using the PLCA model. By multiplying pairs of marginals that belong to
the same latent variable we can see that we can describe all of the Gaussians that originally
made up x. The latent variable priors reflect the relative presence of each Gaussian, we can
see that the prior values properly describe the ratio in the mixture (albeit normalized to
sum to unity).

In the special case of a two-dimensional input P (x), this technique is identical to PLSA
(2), and can be shown to be numerically equivalent to NMF (see appendix 6 for proof). In
fact one can discover a long trace of multiple equivalent mixture models originating early
on from (4) (more information on related models is presented in the discussion section).
Details on rank selection and convergence properties can be found in the literature relating

1. for readability and better printing, in most examples in this paper we use an inverse colormap in which

higher values correspond to darker colors.

3

Smaragdis and Raj

1 2 3
0

0.1

0.2

0.3

0.4

0.5

P(z
i
)

−3

−2

−1

0

1

2

3

P(x
2
 | z

i
)

−2 0 2

P(x
1
 | z

i
)

P(x)

−2 0 2
−3

−2

−1

0

1

2

3
Approximation to P(x)

z
1

z
3

z
3

z
1

z
3

z
1

z
2

z
2

−2 0 2
−3

−2

−1

0

1

2

3

Figure 1: Toy example of PLCA. The 2-d distribution P (x) in the lower left plot is composed
out of three Gaussians. PLCA analysis discovers the relevant marginals and latent
variable priors as shown in the top plots. We can see that the three Gaussians
have been properly described by their marginals, and the latent priors reflect their
proper mixing weights. The lower right plot shows the approximation of P (x)
using the weighted sum of the discovered marginal products.

to these techniques. We will simply mention that convergence is fairly rapid for inputs up
to a few hundreds of dimensions and the results are not always identical, but they are for
the vast majority qualitatively the same.

3. Shift Invariant Probabilistic Latent Component Analysis

In the previous section we described a simple model for decomposing probability distribu-
tions based on sums of products of marginals. As one might expect this is not a particularly
powerful model when it comes to dealing with complex distributions, therefore in this section
we extend it to deal with shift-invariance.

Although why such a behavior might be desired is not that clear at the moment, once
this feature is implemented we will demonstrate its utility on real-world data and uncover
a fundamental relationship with a seemingly unrelated family of algorithms.

3.1 Shift invariance across one dimension

We first consider the problem where we have a somewhat more complex description for
each component than just a product of marginal distributions. Let us consider the case
where we approximate a two-dimensional distribution using a set of left-right ‘shifting’
two-dimensional kernel distributions:

4

Shift-Invariant Probabilistic Latent Component Analysis

P (x, y) =
∑

z

P (z)
∫

P (x, τ |z)P (y − τ |z)dτ (6)

What is effectively done is that instead of multiplying marginals we now convolve a
“kernel” distribution P (x, τ |z) with an “impulse” distribution P (y−τ |z) along the left-right
dimension. Note that for this model to make sense the variables y and τ have to be cardinal
numbers so that the imposed shifting by the convolution operation is a meaningful operation.
The kernel distributions are defined so that they extend over both dimensions, whereas the
impulse distributions exist only on the dimension on which the convolution takes place. An
optimal but uninteresting estimate for the kernel and impulse distributions is P (z) = δ(z),
P (y|z = 0) = δ(y), P (x, τ |z = 0) = P (x, y). This solution merely returns to us the original
distribution P (x, y), without providing any further insight into its structure. To avoid this
uninteresting solution and obtain more useful decompositions, we constrain the kernel to be
zero outside [τ1, τ2], i.e. we impose the constraint that P (x, τ |z) = 0 ∀τ /∈ [τ1, τ2],∀z. Note
that if P (τ |z) = δ(τ), equation (6) reduces to the original PLCA form in equation (1).

In this new setting our goal is still to estimate all three distributions (priors, kernels
and impulses) in equation 6 given P (x, y). In order to perform the estimation under this
new model we need to appropriately update the existing PLCA algorithm to deal with the
convolution operation. The appropriate extensions are described in detail in appendix C.
One again we will use an EM variant as described before. The ‘contribution’ of each latent
variable to be used in the expectation step is now defined over the parameter τ as well as
the latent variable z and will now be:

R(x, y, τ, z) =
P (z)P (x, τ |z)P (y − τ |z)

∑

z′ P (z′)
∫

P (x, τ |z′)P (y − τ |z′)dτ
(7)

and the new estimates for P (z), P (x, τ |z) and P (y|z) will be naturally defined by the proper
integrations over the input P (x, y) weighted by the contribution R(x, y, τ, z):

P (z) =

∫∫∫

P (x, y)R(x, y, τ, z) dx dy dτ (8)

P (x, τ |z) =

∫

P (x, y)R(x, y, τ, z) dy

P (z)
(9)

P (y|z) =

∫ ∫

P (x, y + τ)R(x, y + τ, τ, z)dx dτ
∫∫∫

P (x, y + τ)R(x, y + τ, τ, z) dx dy dτ
(10)

Just as before the above equations are iteratively applied until the estimates for P (z),
P (x, τ |z) and P (y|z) converge to a solution. Although the above equations assume that
x, y and τ are continuous, this algorithm is also trivially adapted to discrete x, y and τ , as
described in appendix C.

This particular model can allow us to deal with more complex inputs as demonstrated by
the following example. Consider the distribution shown in the bottom left plot in figure 2.
In this case we have two repeating patterns that compose the input distribution P (x, y).
One of them is a Gaussian pointing from bottom left to top right, and the other is a set of
two Gaussians that form a wedge pointing towards the top left. Both of these patterns are

5

Smaragdis and Raj

P(x, y)

−5 0 5

−2

0

2

Approximation to P(x, y)

−5 0 5
−4

−2

0

2

4

1 2
0

0.2

0.4

0.6

0.8

1

P(z
i
)

P(x | z
1
)

0 1 2
−2

−1

0

1

2

P(x | z
2
)

0 1 2
−2

−1

0

1

2

−5 0 5

1

2

P(y | z
i
)

Figure 2: Example of left-right shift invariant decomposition using convolution. The top
plots respectivelly display the latent variables priors, the kernel distributions and
the impulse distributions that correspond to the input distribution in the lower
left plot. The lower right plot displays the approximation of the model to the
input. The extracted components have clearly captured the structure of the input.

not easily approximated by products of marginals as in the previous model. They can be
modeled by the convolutive model since they exhibit repetition across the left-right axis.

We proceed to analyze this distribution using the discrete form of this algorithm (de-
scribed in equations 58, 59, 60 and 60 in appendix C). In this particular example we limited
the kernel distributions so that P (x, τ |z) = 0,∀τ < 0 and τ > 2. The latent variable z
was also discretized and assumed only two values (z1 and z2). The results of the converged
convolutive model are shown in figure 2. The top row of plots displays on the left the latent
variable priors P (z), the two top middle plots display the two kernel distributions P (x, t|z)
and P (x, t|z), and the right top plot displays the impulse distributions P (y|z). We can see
that by convolving the pairs P (x, t|z) with P (y|z) we can model the input very well and
also discover useful information about its structure.

Let us note at this point the importance of setting the kernel distribution P (x, τ |z) to
be non-zero for only a limited interval of τ . If P (x, τ |z) were unconstrained, then a variety
of other solutions, e.g. the previously mentioned P (x, τ |z) = P (x, y), P (y|z) = δ(y), may
be obtained that may explain P (x) better (in a KL sense) than the solutions obtained in
the example. Other forms of partitioning P (x, y) in P (x, τ |z) and setting P (y|z) to be an
appropriate assortment of delta functions would also provide an adequate, but uninformative
solution. So like many dimensionality reduction schemes, the limiting of the extent of
P (x, τ |z) serves as the bottleneck that forces the kernels to be informative.

6

Shift-Invariant Probabilistic Latent Component Analysis

3.2 Shift invariance across multiple dimensions

Having dealt with the case of shift invariance on one dimension, we now turn to shift
invariance on multiple dimensions. Specifically, since in this paper we will be applying
this model to two-dimensional real-world data such as images and spectrograms, we will
present the case of shift invariance on both-dimensions of a two-dimensional distribution,
whose two dimensions x and y we will designate the “left-right” and “up-down” dimensions
respectively. For generalizations to an arbitrary number of dimensions, we refer the reader
to appendix C.

We will now assume that the kernel distributions we derive can not only be shifted in
the left-right dimension, but also in the up-down dimension. The model for this case is
defined using a two-dimensional convolution as:

P (x, y) =
∑

z

P (z)
∫∫

P (τx, τy|z)P (x − τx, y − τy|z)dτxdτy (11)

Note that now we will restrict the kernel distributions P (τx, τy|z) such that P (τx, τy|z) =
0 ∀(τx, τy) /∈ ℜτx,τy

, where ℜτx,τy
defines a convex region. ℜτx,τy

is chosen such that its extent
is smaller than that of the input distribution P (x, y), while the domain of the impulse
distributions P (x, y|z) is set to be as large as the input distribution, so that there is space
to shift the kernel with respect to the impulse distribution in both dimensions.

A detailed derivation of this algorithm is presented in appendix C. The ‘contribution’
of each latent variable will now need to be over not only the latent variables, but also both
the convolution parameters τx and τy:

R(x, y, τx, τy, z) =
P (z)P (τx, τy|z)P (x − τx, y − τy|z)

∑

z P (z)
∫∫

P (τx, τy|z)P (x− τx, y − τy|z)dτxdτy
(12)

Like before, the estimation of the updated priors, kernel and impulse distributions can
be done by the proper integrations:

P (z) =

∫∫∫∫

P (x, y)R(x, y, τx, τy, z) dx dy dτx dτy (13)

P (τx, τy|z) =

∫∫

P (x, y)R(x, y, τx, τy, z) dx dy

P (z)
(14)

PI(x, y|z) =

∫∫

P (x + τx, y + τy)R(x + τx, y + τy, τx, τy, z) dx dy
∫∫∫∫

P (x + τx, y + τy)R(x + τx, y + τy, τx, τy, z) dx dy dτx dτy
(15)

The iterative algorithm above is guaranteed to obtain a locally optimal estimate for
the kernel and impulse distributions. However, we have found it advantageous to utilize a
modification, whereby at each iteration we “anneal” the kernel by raising it to an exponent:

P (τx, τy)← c · P (τx, τy)
α (16)

where 0 < α ≤ 1 and c is a normalizing constant. α is initially set to a value less than
1, and as the iterations proceed, it is gradually raised to 1. While this procedure will
not affect the algorithm’s ability to obtain a locally optimal estimate of the kernel and

7

Smaragdis and Raj

P
i
(x, y | z

1
)

5 10 15 20 25 30

5

10

15

P
i
(x, y | z

2
)

5 10 15 20 25 30

5

10

15

P(x, y)

5 10 15 20 25 30

5

10

15

20

Approximation to P(x, y)

5 10 15 20 25 30

5

10

15

20

1 2
0

0.2

0.4

0.6

0.8

P(z
i
) P

k
(τ

1
, τ

2
 | z

1
)

2 4 6 8 10

2

4

6

8

10

P
k
(τ

1
, τ

2
 | z

2
)

2 4 6 8 10

2

4

6

8

10

Figure 3: Example of a fully shift invariant decomposition using convolution. The top
plots display the latent variable priors at the left most, whereas the remaining
two display the two kernel distributions we extracted. The second row of plots
display the impulse distributions, whereas the bottom row displays the original
input distribution at the left and the model approximation at the right.

impulse distributions, we have empirically found that it is much more likely to result in
“meaningful” decompositions, wherein the kernel captures most of the repetitive structure
in the distribution while the impulse distribution chiefly consists of a mixture of impulse
like peaks identifying the location of these repeating structures (thereby producing a sparse
code). A more detailed look on this exponentiation step takes place later in the discussion
section. As before convergence, for the vast majority of cases, results into qualitatively
similar results over multiple runs and for most cases presented in this paper can be achieved
in about a hundred iterations. The use of the annealing factor mentioned above, usually
speeds up convergence and guarantees more uniform results. This technique can be shown
to be almost the same as the convolutive NMF model (15), when we observe shifting of
components into only one dimension. Details in convergence and rank selection can be
found in the relevant literature.

We now present the results from a simple simulation that necessitates such a convolutive
model. The input distribution P (x, y) is shown as the bottom left plot in figure 3. The
learned latent variable priors, kernel and impulse distributions are also shown in the same
figure. Note that the kernel distributions have correctly converged to the two repeating
forms, whereas the impulse distributions show us where these kernels are to be placed to
perform the proper decomposition. Convolving each pair of kernel and impulse and summing
them results in a good approximation of the input distribution.

8

Shift-Invariant Probabilistic Latent Component Analysis

4. Experiments on Real-World Data

In this section we present some results from real world data that highlight the ability
of this algorithm to extract interesting features from complex inputs real-world. So far
we considered the application of this work on probability distributions. However these
algorithms are applicable as it in any form of count data, such as histograms, and energy
or power measurements (all of which can be interpreted as a scaled distribution).

We present results from two domains, auditory and visual.

One might note the unorthodox approach of trying to perform EM-like training not
based on the training data, but on their distribution or observed histogram. The reason
this was done was to provide a way to analyze certain classes of highly complex distributions
and obtain easily interpretable results. The class of distributions that we are most interested
in dealing with are time-frequency distributions from audio data and intensity distributions
from image data. In this section we present various experiments on such distributions and
yield a variety of interesting results.

4.1 Audio data

We start by presenting some results using audio signals. To do so we will operate on a
time-frequency distribution representation. This representation represents an audio signal
by the distribution of its energy in the time and frequency axes. It is effectively a scaled
histogram of sound atoms that fall in each time and frequency grid point.

We start with an example where only one kernel distribution is sought, albeit in multiple
shifted positions. The example we picked to demonstrate this is a recording of a piano
passage which included multiple notes sounding simultaneously. The nature of a music
note is such that we usually have most signal energy at what is called the fundamental
frequency (which also defines the pitch of the note played) and then decreasing amounts
of energy on higher frequencies which are integer multiples of the fundamental (the so
called harmonics of the sound). On an instrument like the piano it is safe to assume that
neighboring notes have essentially the same energy distribution across frequencies albeit
shifted along the frequency axis (assuming a logarithmic frequency spacing representation).
In a time-frequency representation by playing different notes at different times we effectively
have shifting in both the time axis denoting when a note was played, and the frequency axis
denoting which note it was. In the bottom left plot of figure 4 we show a constant-Q (1)
time-frequency distribution of the aforementioned piano passage. One can see the harmonic
series repeating in various positions shifted in time (horizontal axis) and frequency (vertical
axis) so as to represent each note. This was a discrete measurement sized 234 frequency
bands by 317 time points. We analyzed this time-frequency distribution seeking a single
latent variable. We defined the frequency axis dimension of the kernel distribution to be
180 frequencies long, and the time axis dimension to have a width of a single ‘slice’ of the
input. The impulse distribution was responsible of placing that kernel distribution in the
right places to reconstruct the input distribution. After training for about 100 iterations
we obtained the results shown in figure 4 in the two top plots. The kernel distribution
looks very much so like a harmonic series, whereas the impulse distribution has energy
only at the place of the fundamental frequency, thereby noting where the kernels need to
be placed to reconstruct the input. Thus we have, in an unsupervised manner, found out

9

Smaragdis and Raj

Kernel distribution Impulse distribution

Input

F
re

qu
en

cy

Time

Approximation

Time

F
re

qu
en

cy

Figure 4: An example of discovering the shift-invariant structure in music. The bottom left
plot displays a constant-Q time-frequency distribution of a piano notes passage.
Analysis of this distribution results into a kernel function that is a harmonic
series (top left), and an impulse function that places that harmonic series in the
time-frequency plane (top right). The impulse function correctly identifies the
time and frequency placement of all the notes played. The approximation to the
input is shown in the bottom right plot.

that the piano recording was constructed by single harmonic template shifted appropriately
in time and frequency. From this analysis we can define the timbre of a piano note (the
kernel distribution) and also perform a transcription of the performance by noting the
maxima of the impulse distribution. An interesting point to make is that although the
harmonic structure is mostly obscured, due to constant note overlap in the passage, it is
easily discovered by our analysis.

In the next example we will extract multiple kernel distributions from speech. We will
analyze a magnitude spectrogram representation of male speech and see what type of kernel
distributions compose it. For this example we used about 30 seconds of male speech from
the TIMIT database and extracted 513 frequencies which resulted in a discretized input
distribution of 513 frequencies by 938 time points. We looked for a latent variable with
20 states and defined the kernel distribution size to extend throughout all frequencies but
only for 8 time points. This kernel size resulted into bases that only shifted in time but not
in frequency (since both the kernel and the input had the same frequency width there was
no space to shift along that dimension). The resulting kernel distributions are shown in
figure 5. The speech researcher will be quick to recognize that the time-frequency form of
these kernels resembles the structure of various phonemes. One can see a harmonic structure
in each kernel distribution as well as a formant structure characteristic of a phoneme.
Interestingly enough, and due to the additivity in this model, qualitatively similar results

10

Shift-Invariant Probabilistic Latent Component Analysis

Kernel distributions for speech spectrograms

F
re

qu
en

cy

Component/Time

Figure 5: The resulting kernel distributions from analysis of the magnitude spectrogram of
speech. The distributions are stacked from left to right and separated by a dotted
line. One can see that their shape corresponds to magnitude spectrograms of
various speech phonemes.

have been obtained when using mixtures of speakers as an input. In effect we find that the
building blocks of speech are indeed phonemes placed in various parts in time. Analyzing
different speaker types results in a different set of kernel distributions (phonemes) that
reflects the unique nature of each speaker.

4.2 Image data

Image data can be thought of a distributions as well (the probability or count of photons
landing on a particular point on an optical sensing grid), and can also be decomposed by our
approach so that they yield interesting results. Like before we start with an example where
we wish to extract a single kernel distribution. The input is a 136 by 511 pixel RGB color
photograph of a choir shown in at the top of figure 6, which constitutes a 136×511×3 input.
The structure of the input is easy to see, we have a multitude of heads repeating at various
positions along the picture. We analyzed the input looking for a single latent variable and
kernel sized 35 × 25 × 3 (35 by 25 pixels by 3 color channels). After analysis of the input
we obtained the kernel distribution shown at the bottom left of the same figure, and the
impulse distribution shown at the bottom right. One can see that the kernel distribution is
shaped like the average head, maintaining the proper colors, and the impulse distribution
is placing it at the appropriate points for each chorus singer.

A more complex example is shown with the data in figure 7. The bottom left plot
shows a greyscale 81 by 113 pixel example of handwriting. Three characters are composing
the picture and are positioned arbitrarily around the x,y grid. Analyzing the data we

11

Smaragdis and Raj

Input

Kernel distribution

Impulse distribution

Figure 6: A picture of a chorus which exhibits many heads at different positions is shown
at the top plot. The extracted kernel and impulse distributions are shown in the
bottom left and right plots respectively.

extracted three 15 by 15 kernel distributions that are shown in the top left plot of the same
figure. Note how the three kernel distributions are actually the three letters that make
up the input. The impulse distribution contains spikes at the positions that correspond
to each letter in the input. The approximation that results using this decomposition has
the amusing property of streamlining the handwriting and making all instances of the same
letters look more alike than in the original. The latent variable priors, shown under the
kernel distributions, essentially tell us how much energy each letter consumes. The ‘alpha’,
due to a more elaborate stroke, contains more energy from the ‘gamma’ which in turn
contains somewhat more energy than the less elaborate ‘one’.

Just as in the case of the audio data, we can obtain qualitatively the same results even
when the characters overlap as long as they did not do so consistently.

5. Discussion

Of significant interest is the relationship of this type of analysis (at least in the basic form) to
various existing methods. The non-convolutive form of PLCA is essentially a multi-variate
generalization of Hofmann’s bi-variate Probabilistic Latent Semantic Analysis (PLSA) (2).
Through association with PLSA we can see how our method relates and enriches well
known data mining approaches employing Latent Semantic Analysis (LSA), Singular Value
Decomposition (SVD) and Principal Component Analysis (PCA) as described by (2). More
generally, the PLCA model may be related to latent class models (3) and latent structure
analysis (4) which similarly decompose the probability distribution of unconditionally de-
pendent variables into mixtures latent-variable-conditioned distributions of sets of variables.
None of these earlier models, however, have been extended to incorporate shift invariance.
Another family of algorithms that our approach is related to is the PARAFAC family (9).

12

Shift-Invariant Probabilistic Latent Component Analysis

Impulse distributions

Input Approximation

Kernel distributions

1 2 3
0

1
Priors

Figure 7: A handwriting example using three different characters is shown in the bottom
left figure. The three extracted kernel distributions are shown in the top left plot,
their priors right under them, and the three impulse distributions are shown in
the top right plot. The resulting approximation is shown at the bottom right.

PARAFAC decompositions in general attempt to factor multilinear structures into vector
components. This corresponds to PLCA for arbitrary dimensional distributions. The key
difference here is that PARAFAC algorithms are predominantly least squares approxima-
tions to an arbitrary input, whereas our approach is explicitly approximating probability
densities by marginals and has a probabilistic foundation. Certain versions of PARAFAC
algorithms have been developed for non-negative inputs which brings this a step closer to to
PLCA, but to our knowledge no probabilistic or convolutive framework has been proposed.

Another relative to this family of algorithms is the Non-Negative Matrix Factorization
(NMF) algorithm (5). In NMF the objective is again to factor a non-negative matrix us-
ing two lower rank non-negative matrices. Effectively this performs a similar operation
as PLCA for two dimensional distributions. An interesting connection of our work with
NMF comes through with the cost function that is minimized when performing NMF. This
function is most often an adaptation of the Kullback-Leibler divergence for arbitrary non-
negative functions. This divergence is minimized between the input and the product of the
estimated factors. Interestingly enough the training we propose for PLCA is essentially
minimizing the KL divergence between the input probability density and the density spec-
ified product of marginals. One can see how the left and right factors in NMF correspond
to P (x1|z) and P (x2|z) with P (z) already factored in them. Even though the estimation
algorithms for NMF and PLCA appear to be radically different, they can be shown to be
numerically identical when NMF updates are derived using the KL-like objective function
(see appendix 6). Subsequent convolutive extensions to NMF directly correspond to con-
volutive PLCA, in fact all results in (13) (14) (15) which use various forms of NMF can

13

Smaragdis and Raj

be replicated using the algorithms described in this paper. Recent extensions of NMF have
focused on tensor decompositions (18). In the context of PLCA this corresponds to an
input distribution of more than two variables which is naturally handled in the training.
An example of such a case is shown in figure 6. Although there are strong similarities to
non-negative factorization approaches, we note that the particular approach we have chosen
allows a better integration of this work into other machine learning frameworks and meta-
learning models since it is described in a probabilistic setting as opposed to a setting of
numerical approximation. Such extensions can incorporate latent Dirichlet allocation mod-
els, correlated topics, hierarchical structures and other ideas which are currently available
in latent variable models.

It may be useful, at this point, to consider the generative model underlying both the
simple and convolutive PLCA models. According to the simple PLCA model given by the
right hand side of Equation 1, data are generated by a two-step drawing procedure. At each
draw, first a latent variable z is drawn from the distribution P (z), and in the second step
each of the variables xi is drawn from the conditional distribution P (xi|z). The set of xi

together form the observation x. For the convolutive models the drawing procedure is more
complex. At each draw a latent variable z is drawn from P (z). x̂ is drawn from a set of
conditional distributions P (xi|z). The components τi of a second vector τ are drawn from
the set of conditional distributions P (τi|z). There is a one-to-one correspondence between
all components of τ and some subset of components of x̂. The components of τ are added
to the corresponding components of x̂ to produce the final observation x. Consequently, the
final distribution of the observations is given by the weighted sum of the convolution of the
conditional distributions of x and τ . The key point here is that for any given non-negative
data, the generative process represented by the PLCA model actually draws instances of
the support that the data lie on. The various component conditional distributions are also
defined over the support. The data themselves, after due normalization, represent the
overall distribution for the process. Thus, for an image the pixel positions (coordinates)
represent the random variables that are drawn while pixel values represent the probabilities
of the corresponding pixel positions.

Parallels may also be observed between our convolutive PLCA model and the “Trans-
formed Component Analysis” (TCA) presented by Jojic et. al. (10; 11). TCA is a de-
composition technique that extracts structural thematic blocks of data such as images in a
manner that is invariant to transforms such as shifts. Although their approach also results
in shift-invariant decompositions, there is a fundamental difference in the nature of the ran-
dom variable considered by the TCA and PLCA models. For instance, when analysing an
image, the RV considered by TCA is the vector of pixel values, that is transformed to derive
observation. On the other hand, for convolutive PLCA the RVs are the pixel positions as
explained above, and the pixel value at any position simply represents the probability that
the corresponding pixel will be drawn. Another key difference between TCA and PLCA is
that TCA analyzes collections of data to derive bases such that any specific data instance
may be explained as a sum of tranformations of a number of bases. The bases obtained
by the PLCA algorithm, on the other hand, identify repeating patterns within a single

multidimensional data instance by analysing it. Thus the analyses obtained from the two
algorithms are fundamentally different.

14

Shift-Invariant Probabilistic Latent Component Analysis

We should mention that our work also closely relates to positive deconvolution (8). This
is a particularly desirable operation in the fields of astronomical imaging and bioinformatics.
The objective is given a convolved sequence and a filter already applied on it obtain a non-
negative deconvolution of the two. Various algorithms have been proposed mostly relying
on least-squares formulation. Using our framework it is easy to adapt to this problem.
Upon defining the filter to be a kernel distribution we can proceed by performing shift
invariant PLCA only this time we will only update the impulse distribution and keep the
kernel distribution fixed to the filter we wish to deconvolve with. Due to the lower number of
variables to be estimated convergence is much more rapid than when performing a complete
shift invariant PLCA.

An point worthy of some discussion in our approach is the exponentiation operation we
described in section 3.2 which we use as a mechanism to ensure sparsity on the impulse
distributions. Although we stopped short of a probabilistic explanation we note that this
operation corresponds to information theoretic manipulations. The ‘flattening’ that the
exponentiation produces causes the entropy of the kernel distributions to increase. Since
the data we try to model has a fixed entropy, the increased kernel entropy is ‘borrowed’
from the impulse distributions. This forces the entropy of the impulse distributions to
decrease which causes this form of sparse learning. We could alternatively raise the impulse
distributions to a power greater than one to achieve similar results, however since the kernel
distributions are in general smaller it is more efficient to manipulate them instead. This
way of forcing sparsity in such a decomposition related to (7), although in our approach
it is done in a probability space as opposed to a numerical approximation. It is somewhat
straightforward to impose this flattening as an entropy constraint in the derivation of the
presented algorithms. This can be done with the use of entropic priors (21). However the
resulting process becomes much more complicated due to the necessary use of Lambert’s W
functions and additional iterative estimations. Treatment of these issues deems additional
analysis that is out of the scope of this paper, details on such a constraint in this particular
context are shown in (20) and (19). In practice we found the ad-hoc exponentiation to be
an efficient compromise, at least in the context of the problems we analyzed.

Another issue that arises is the number and size of components that one might seek
for. In most of the examples we presented in this paper we knew a priori how many
components the scene was made of and roughly how big they should be. Estimating more
components usually has the effect of distributing the desired answer into more components
or allocating to them otherwise irrelevant information, thereby providing a more detailed
description. Estimating fewer components results in either the non-detection of some desired
components or a consolidation of multiple desired components into one. Asking for large-
sized components results in some overfitting since there is little space to shift, whereas
small-sized components end up being insufficient to model the input desirably. In general,
as in many dimensionality reduction processes it is hard to reliably estimate how many and
how large the components must be as an optimal choice, although the probabilistic setting
allows the use of popular approaches such as the Schwarz-Bayesian information criterion
and other similar measures. It is also possible to employ sparsity constraints on the priors
of the components and effectively impose an automatic muting of redundant components.
However this approach also requires an arbitrary selection of a sparsity parameter and
merely transposes the problem of rank selection to that of sparsity bias selection.

15

Smaragdis and Raj

6. Conclusion

In this paper we presented an analysis method that allows us to decompose probability
distributions into shift invariant components. We presented our approach in gradually
complicating cases starting from a simple static model to an arbitrary dimensionality and
shift invariance model. We demonstrated how to derive an EM algorithm to perform the
decomposition and presented various examples where such a decomposition can be useful.
Finally we discussed how our approach relates to various other decomposition methods in
order to provide some more insight, and show how this work can be applied to already
known problems as a substitute.

16

Shift-Invariant Probabilistic Latent Component Analysis

Appendix A: The basic update rule

The update rules for PLCA are obtained through a variant of the expectation maximization
algorithm. We attempt to estimate the parameters Λ of a model P (x; Λ) for the distribution
(or density) of a random variable x, such that the KL divergence between P (x; Λ) and the
true distribution of x, P (x) is minimized. The KL divergence between the two is defined
by:

D(P (x)||P (x; Λ)) = −Ex log P (x; Λ)−H(x) (17)

Here Ex refers to the expectation operator with respect to P (x), the true distribution of x.
H(x) is the entropy of x.

Introducing a second random variable z, and by Bayes’ rule

log P (x; Λ) = log P (x, z; Λ) − log P (z|x; Λ)

Taking expectations on both side with respect to P (z|x; Λ′), i.e. the conditional probability
of z obtained with any parameter Λ′, and noting that log P (x; Λ) does not depend on z,

log P (x; Λ) = Ez|x;Λ′

{

log P (x, z; Λ)
}

− Ez|x;Λ′

{

log P (z|x; Λ)
}

(18)

Combining the above with Equation 17,

D(P (x)||P (x; Λ)) = −Ex

{

Ez|x;Λ′

{

log P (x, z; Λ)
}

}

+

Ex

{

Ez|x;Λ′

{

log P (z|x; Λ)
}

}

−H(x)
(19)

D(P (x)||P (x; Λ)) −D(P (x)||P (x; Λ′)) =

Ex

{

Ez|x;Λ′

{

log P (x, z; Λ′)
}

−Ez|x;Λ′

{

log P (x, z; Λ)
}

}

−D(P (z|x; Λ′)||P (z|x; Λ))

(20)

The KL divergence between two distributions is always non-negative (Theorem 2.6.3 in
(17)), i.e. D(P (z|x; Λ′)||P (z|x; Λ)) ≥ 0 ∀Λ. Hence, assuredly,

Ex

{

Ez|x;Λ′

{

log P (x, z; Λ)
}

}

≥ Ex

{

Ez|x;Λ′

{

log P (x, z; Λ′)
}

}

⇒

D(P (x)||P (x; Λ)) ≤ D(P (x)||P (x; Λ′))
(21)

I.e., the distance between P (x|Λ) and P (x) is assuredly lesser than or equal to the
distance between P (x) and P (x|Λ′) if Λ minimizes Ex

{

Ez|x;Λ′{log P (x, z; Λ)}
}

. This leads
to the following iterative update rule for the parameters of P (x; Λ):

Λ(n+1) = argmaxΛQ(Λ,Λ(n))

Q(Λ,Λ(n)) = Ex

{

Ez|x;Λ(n)

{

log P (x, z; Λ)
}

}

(22)

where Λ(n) is the estimate obtained for Λ in the nth update. Iterations of Equation 22 will
result estimates of Λ that will monotonically decrease D(P (x)||P (x; Λ)).

17

Smaragdis and Raj

Appendix B: Update rules for non-convolutive mixture models

We define an ”integral” operator Ix{f(x)} such that for a continuous variable x Ix{f(x)} =
∫ ∞
−∞ f(x)dx, while for a discrete random variable Ix{f(x)} =

∑

x f(x). By the definition
of the operator, Ix{Iy{f(x, y)}} = Iy{Ix{f(x, y)}}, Ix{P (x)} = 1 and Ix{P (x)g(x)} =
Exg(x).

A non-convolutive mixture model for the distribution of the data is

P (x; Λ) = Iz

{

P (z)
∏

j

P (xj |z)
}

(23)

where x = {xj}. Note that the above formulation places no restriction on z, which might
be either continuous or discrete. Similarly each xj can be continuous or discrete. The
parameters of this distribution are P (z) and P (xj |z), i.e Λ = {P (z), P (xj |z) : ∀(z, j)}. We
will denote the estimates obtained in the nth update by the superscript (n).

Let us define

R(x, z) ≡ P (n)(z|x) =
P (n)(z)

∏

j P (n)(xj |x)

Iz′

{

P (n)(z′)
∏

j P (n)(xj |z′)
} (24)

We can now write

Ez|x;Λ(n)

{

log P (x, z; Λ)
}

= Iz

{

R(x, z) log

P (z)
∏

j

P (zj |x)

}

= Iz

{

R(x, z)

log P (z) +
∑

j

log P (xj |z))

}

(25)

The update equations are easily derived from Equations 22 and 25, with the additional
incorporation of Lagrangian terms to enforce the constraints that the total probability
masses under P (z) and P (xj |z) are unity.

We can express the constrained form of the equation to be optimized as:

Λ(n+1) = argmaxΛQ(Λ,Λ(n)) (26)

Q(Λ,Λ(n)) = Ex

{

Iz

{

R(x, z) log P (z)
}

}

+ Ex

{

Iz

{

∑

j

R(x, z) log P (xj |z)
}}

− λIz

{

P (z)
}

− Iz

{

∑

j

λz,jIxj

{

P (xj |z)
}

}

= Iz

{

Ex

{

R(x, z)
}

log P (z)− λP (z)
}

+ Iz

{

∑

j

{

Ex

{

R(x, z) log P (xj |z)
}

− λz,jIxj

{

P (xj |z)
}

}}

(27)

We note that in general the optimization of Ix{h(g(x))} with respect to g(x) leads to
dh(g(x))

dg(x) = 0 both for discrete and continuous x, by direct differentiation in the former case
and by the calculus of variations in the latter.

18

Shift-Invariant Probabilistic Latent Component Analysis

The (n+1)th estimate of P (z) is obtained by optimizing Q(Λ,Λ(n))with respect to P (z),
which gives us

Ex{R(x, z)}

P (n+1)(z)
− λ = 0

λP (n+1)(z) = Ex{R(x, z)} (28)

Since Iz{P
(n+1)(z)} = 1 and Iz{R(x, z)} = 1, applying the Iz{.} operator to both sides of

Equation 28 we get λ = 1, leading to the update equation

P (n+1)(z) = Ex{R(x, z)} (29)

To derive the (n + 1)th estimate of P (xj |z) we first note from reference (16) that

Ex

{

R(x, z) log P (xj|z)
}

= Exj

{

log P (xj |z)Ex|xj
{R(x, z)}

}

(30)

We can therefore rewrite Q(Λ,Λ(n)) as

Q(Λ,Λ(n)) = Iz

{

∑

j

{

Exj

{

log P (xj |z)Ex|xj
{R(x, z)}

}

− λz,jIxj

{

P (xj |z)
}

}

}

+ C

= Iz

{

∑

j

{

Ixj

{

P (xj) log P (xj |z)Ex|xj
{R(x, z)} − λz,jP (xj |z)

}

}

}

+ C

(31)

where C represents all terms that are not a function of P (xj |z). P (xj) is the true marginal
density of xj . Optimizing Q(Λ,Λ(n)) with respect to P (n+1)(xj |z), we obtain

P (xj)Ex|xj
{R(x, z)}

P (n+1)(xj |z)
− λz,j = 0

P (xj)Ex|xj
{R(x, z)} = λz,jP

(n+1)(xj |z). (32)

Since Ixj
{P (n+1)(xj|z)} = 1, we can apply the Ixj

{.} operator to both sides of the above
equation to obtain

λi,j =Ixj

{

P (xj)Ex|xj
{R(x, z)}

}

=

Exj

{

Ex|xj
{R(x, z)}

}

= Ex{R(x, z)} = P (n+1)(z)
(33)

and

P (n+1)(xj |z) =
P (xj)Ex|xj

{R(x, z)}

P (n+1)(z)
=

Ix/xj

{

P (x)R(x, z)
}

P (n+1)(x)
(34)

where x/xj = {xi : i 6= j} represents the set of all components of x excluding xj. Equations
29 and 34 form the final update equations.

If z is a discrete random variable, the non-convolutive mixture model is given by

P (x; Λ) =
∑

z

P (z)
∏

j

P (xj |z) (35)

19

Smaragdis and Raj

The update equations are given by

R(x, z) ≡
P (z)

∏

j P (xj |z)
∑

z′ P (z′)
∏

j P (xj |z′)
(36)

P (n+1)(z) = Ix
{

P (x)R(x, z)
}

(37)

P (n+1)(xj |z) =
Ix/xj

{

P (x)R(x, z)
}

P (n+1)(z)
(38)

If x is a discrete random variable (i.e. every xj is discrete), the specific form of the update
rules (Equations 29 and 34) are:

P (n+1)(z) =
∑

j

∑

xj

P (x)R(x, z) (39)

P (n+1)(xj |z) =

∑

i:i6=j

∑

xi
P (x)R(x, z)

P (n+1)(z)
(40)

If x is a continuous random variable (i.e. every xj is continuous), the update equations
become:

P (n+1)(z) =

∫ ∞

−∞
P (x)R(x, z)dx (41)

P (n+1)(xj |z) =

∫ ∞
−∞

∫ ∞
−∞ · · ·

∫ ∞
−∞ P (x)R(x, z)dx1dx2..dxi ∀i 6= j

P (n+1)(z)
(42)

Appendix C: Update rules for shift-invariant mixture models

The shift-invariant mixture model models the distribution of some dimensions of a multi-
variate random variable as a convolution of a density kernel and a shift-invariant ”impulse”
density. As before, let x be the multi-variate random variable. Let y represent the set
of components of x that are modelled in a shift-invariant manner, and w the rest of the
components, i.e. x = w ∪ y and w ∩ y = φ (where φ represents the null set).

The shift-invariant model for the distribution of x models it as follows:

P (x; Λ) = Iz

{

P (z)Iτ

{

P (w, τ |z)P (y − τ |z)
}

}

(43)

where τ is a random variable that is defined over the same domain as y. The terms to be
estimated are P (z), P (w, τ |z) and P (y|z), i.e. Λ = {P (z), P (w, τ |z), P (y|z)}. Note that
Equation 43 assumes that the random variable y is cardinal, irrespective of whether it is
discrete or continuous. Also, as before, z may be either continuous or discrete.

Let us define

R(x, τ , z) = R(w,y, τ , z) ≡ Pn(z, τ |x) =
P (n)(z)P (n)(w, τ |z)P (n)(y − τ |z)

Iz′
{

P (z′)I
τ
′{P (w, τ ′|z′)P (y − τ

′|z′)}
} (44)

R(x, z) ≡ Iτ{R(w,y, τ , z)} = P (n)(z|x) (45)

The (n + 1)th estimate of P (z) is derived identically as in Appendix B and is given by

P (n+1)(z) = Ex{R(x, z)} (46)

20

Shift-Invariant Probabilistic Latent Component Analysis

To determine the update equations for P (w, τ |z) and P (y|z) we define the Q function
to be optimized as

Q(Λ,Λ(n)) = Ez,τ|x;Λ(n)

{

Ex

{

log P (x, z, τ ; Λ)
}

}

+ C(Λ), (47)

where C(Λ) includes all constraint terms required to ensure that the estimated functions
integrate to 1. To obtain the (n + 1)th estimate of P (y|z), we use the following Q function
(where all terms not related to P (y|z) are represented by the term D):

Q(Λ,Λ(n)) =Iz,τ

{

Ey

{

log P (y − τ |z)Ew|y{R(w,y, τ , z)}
}

}

− Iz

{

λy,zIy
{

P (y|z)
}

}

+ D

=Iz,τ,y

{

P (y) log P (y − τ |z)Ew|y{R(w,y, τ , z)}
}

− Iz,y

{

λy,zP (y|z)
}

+ D

=Iz,τ,y

{

P (y + τ) log P (y|z)Ew|y{R(w,y + τ , τ , z)}
}

− Iz,y

{

λy,zP (y|z)
}

+ D

=Iz,y

{

log P (y|z)Iτ

{

P (y + τ)Ew|y{R(w,y + τ , τ , z)}
}

− λy,zP (y|z)
}

+ D

(48)

Optimizing Equation 48 with respect to P (y|z) to obtain P (n+1)(y|z), gives us

Iτ

{

P (y + τ)Ew|y{R(w,y + τ , τ , z)}
}

P (n+1)(y|z)
− λ = 0;

Iτ

{

P (y + τ)Ew|y{R(w,y + τ , τ , z)}
}

= λP (n+1)(y|z) (49)

Since Iy{P
(n+1)(y|z)} = 1, applying the Iy(.) operator to both sides of the above equation,

we get

λ = Iy

{

Iτ

{

P (y + τ)Ew|y{R(w,y + τ , τ , z)}
}

}

= Iy,w,τ

{

P (w,y + τ)R(w,y + τ , τ , z)
} (50)

and

P (n+1)(y|z) =
Iτ

{

P (y + τ)Ew|y{R(w,y + τ , τ , z)}
}

Iy′,w,τ

{

P (w,y′ + τ)R(w,y′ + τ , τ , z)
}

=
Iw,τ

{

P (w,y + τ)R(w,y + τ , τ , z)
}

Iy′,w,τ

{

P (w,y′ + τ)R(w,y′ + τ , τ , z)
}

(51)

To obtain the (n + 1)th estimate of P (w, τ |z), we use the following Q function:

Q(Λ,Λ(n)) =Iz,τ

{

Ew

{

log P (w, τ |z)Ey|w{R(w,y, τ , z)}
}

}

− Iz

{

λτ,zIw,τ

{

P (w, τ |z)
}

}

+ B

=Iz,τ,w

{

P (w) log P (w, τ |z)Ey|w{R(w,y, τ , z)} − λτ,zP (w, τ |z)
}

+ B (52)

where B represents all irrelevant terms. Optimizing Q(Λ,Λ(n)) with respect to P (w, τ |z)
to obtain P (n+1)(w, τ |z) gives us:

P (w)Ey|w{R(w,y, τ , z)} = λτ,zP
(n+1)(w, τ |z) (53)

21

Smaragdis and Raj

Since Iw,τ

{

P (n+1)(w, τ |z)
}

= 1, we get

λτ,z =Iw,τ

{

P (w)Ey|w{R(w,y, τ , z)}
}

= Iτ

{

Ew

{

Ey|w{R(w,y, τ , z)}
}

}

=Iτ

{

Ex{R(x, τ , z)}
}

= Ex

{

Iτ{R(x, τ , z)}
}

= Ex{R(x, z)} = P (n+1)(z) (54)

and

P (n+1)(w, τ |z) =
P (w)Ey|w{R(w,y, τ , z)}

P (n+1)(z)
=

Iy
{

P (x)R(x, τ , z)
}

P (n+1)(z)
(55)

Equations 46, 51 and 55 form the final update equations.

Specific Case: Shift-invariance in one dimension

We now present the update rules for a shift-invariant mixture model of the joint distribution
of two random variables x and y, P (x, y), where only y is modelled in a shift invariant
manner. z is assumed to be discrete. The mixture model is

P (x, y; Λ) =
∑

z

P (z)It

{

P (x, τ |z)P (y − τ |z)
}

(56)

The update rules become:

R(x, y, τ, z) ≡
P (n)(z)P (n)(x, τ |z)P (n)(y − τ |z)

∑

z′ P
(n)(z′)Iτ ′

{

P (n)(x, τ ′|z′)P (n)(y − τ ′|z′)
} (57)

P (n+1)(z) = Ix,y,τ

{

P (x, y)R(x, y, τ, z)
}

(58)

P (n+1)(x, τ |z) =
Iy

{

P (x, y)R(x, y, τ, z)
}

P (n+1)(z)
(59)

P (n+1)(y|z) =
Ix,τ

{

P (x, y + τ)R(x, y + τ, τ, z)
}

Iy′,x,τ

{

P (x, y′ + τ)R(x, y′ + τ, τ, z)
} (60)

Specific Case: Shift-invariance in two dimensions

For the above case, both x and y can be modelled shift-invariantly as

P (x, y; Λ) =
∑

z

P (z)Iτ1,τ2

{

P (τ1, τ2|z)P (x − τ1, y − τ2|z)
}

(61)

The update rules become:

R(x, y, τ1, τ2, z) ≡
P (n)(z)P (n)(τ1, τ2|z)P (n)(x− τ1, y − τ2|z)

∑

z′ P (z′)Iτ ′

1,τ ′

2

{

P (τ ′
1, τ

′
2|z)P (x − τ ′

1, y − τ ′
2|z)

} (62)

P (n+1)(z) = Ix,y,τ1,τ2

{

P (x, y)R(x, y, τ1, τ2, z)
}

(63)

P (n+1)(τ1, τ2|z) =
Ix,y

{

P (x, y)R(x, y, τ1, τ2, z)
}

P (n+1)(z)
(64)

P (n+1)(x, y|z) =
Iτ1,τ2

{

P (x + τ1, y + τ2)R(x + τ1, y + τ2, τ1, τ2, z)
}

Ix′,y′,τ1,τ2

{

P (x′ + τ1, y′ + τ2)R(x′ + τ1, y′ + τ2, τ1, τ2, z)
} (65)

22

Shift-Invariant Probabilistic Latent Component Analysis

Appendix D: Equivalence between PLCA and NMF

In this appendix we show how the training algorithms for Probabilistic Latent Component
Analysis (PLCA) and Non-Negative Matrix Factorization (NMF) using a KL-metric are
numerically identical. Since NMF is specifically defined for non-negative matrices, we will
consider the case of PLCA decomposition of a bivariate distribution P (x, y) over two discrete
random variables x and y, both of which take a finite number of values such that the set
of all (x, y) pairs can be represented as a matrix. The PLCA model for the distribution is
given by P (x, y) =

∑

z P (z)P (x|z)P (y|z).

The update rules for the estimation of P (z), P (x|z) and P (y|z) are obtained for Equa-
tions 36, 39 and 40 as:

R(x, y, z) =
P (n)(z)P (n)(x|z)P (n)(y|z)

∑

z P (n)(z)P (n)(x|z)P (n)(y|z)
(66)

P (n+1)(z) =
∑

x,y

P (x, y)R(x, y, z) (67)

P (n+1)(y|z) =

∑

x P (x, y)R(x, y, z)
∑

x,y P (x, y)R(x, y, z)
(68)

P (n+1)(x|z) =

∑

y P (x, y)R(x, y, z)
∑

x,y P (x, y)R(x, y, z)
(69)

where the superscript n refers to estimates obtained in the nth iteration of the algorithm.

From Bayes’ rule P (y, z) = P (z)P (y|z). We also have
∑

z P (n)(z)P (n)(x|z)P (n)(y|z) =
∑

z P (n)(x|z)P (n)(y, z) = P (n)(x, y), where P (n)(x, y) is the approximation obtained to
P (x, y) in the nth iteration. So we can rearrange the update rules in terms of P (x|z) and
P (y, z) and P (n)(x, y) as:

R(x, y, z) =
P (n)(x|z)P (n)(y, z)

P (n)(x, y)
(70)

P (n+1)(y, z) =
∑

x

P (x, y)R(x, y, z) (71)

P (n+1)(x|z) =

∑

y P (x, y)R(x, y, z)
∑

y P (n+1)(y, z)
(72)

P (n+1)(z) =
∑

y

P (y, z) (73)

P (n+1)(y|z) =
P (n)(y, z)

P (n)(z)
(74)

Note that the above update rules are identical to the update rules in Equations 66-69,
except that we now utilize P (y, z) as an intermediate variable. The final estimates for
P (z), P (x|z) and P (y|z) obtained from Equations 66-69 would be numerically identical to
those obtained from Equation 70-74.

23

Smaragdis and Raj

In Equations 72 and 71 the update for P (x|z) is computed in terms of R(x, y, z). Ex-
plicitly expanding R(x, y, z) in the update rules for P (x|z) and P (y, z) we can write

P (n+1)(y, z) =
∑

x

P (x, y)
P (n)(x|z)P (n)(y, z)

P (n)(x, y)

= P (n)(y, z)
∑

x

P (x, y)

P (n)(x, y)
P (n)(x|z) (75)

P (n+1)(x|z) =

∑

y P (x, y)P (n)(x|z)P (n)(y,z)

P (n)(x,y)
∑

y P (n+1)(y, z)

=
P (n)(x|z)

∑

y
P (x,y)

P (n)(x,y)
P (n)(y, z)

∑

y P (n+1)(y, z)
(76)

The above two equations represent the complete PLCA update rule, since P (n+1)(z) and
P (n+1)(y|z) are derived from P (n+1)(y, z).

We can write the above in matrix notation. Let V represent the matrix of probability
values P (x, y). Let Wn represent the matrix of probability values P (n)(x|z), such that
P (n)(x|z) is the xth row of the zth column of Wn. Note that the columns of Wn sum to 1.0.
Similarly, let Vn represent the matrix of P (n)(x, y) values and HT

n represent the matrix of
P (n)(y, z) values, such that P (n)(y, z) is the zth row of the yth column of Hn. We thus have
Vn = WnHn. Equations 75 and 76 can now be written in matrix form as

Hn+1 = Hn ⊙Wn
T V

Vn
(77)

Wn+1 =

(

Wn ⊙
V

Vn
Hn

T

)(

diag(Hn+11)

)−1

(78)

where ⊙ represents Hadamard (component-wise) multiplication and the division is also
component-wise. 1 represents a column vector of ones such that Hn+11 represents the
column vector derived by summing the rows of Hn+1. The diag(·) operator constructs a
diagonal matrix comprising the components of its vector argument.

We note that the columns of Wn sum to 1.0. Hence, diag(1T Wn) is an identity ma-
trix and post multiplying Wn by its inverse will not change its value. Correspondingly,
Equations 79 and 80 can be rewritten as:

Hn+1 =

(

diag(1T Wn)

)−1(

Hn ⊙Wn
T V

Vn

)

(79)

Wn+1 =

(

Wn ⊙
V

Vn
Hn

T

)(

diag(Hn+11)

)−1

(80)

Once the updates above converge to a final estimate V ≈ WH, the final estimates
of P (x|z) are obtained as the entries of the matrix W, P (z) values are obtained as the

24

Shift-Invariant Probabilistic Latent Component Analysis

entries of H1 (the elements of which represent the terms
∑

y P (y, z)), and P (y|z) terms are

obtained as the entries of
(

diag(H1)
)−1

H.

The astute reader would realize that Equations 79 and 80 are identical to NMF update
rules given by Equations 5 in reference (6). We have thus shown that one may utilize NMF
update rules to perform PLSI and obtain numerically identical results to those obtained by
the PLSI rules of Equations 66-69. The only requirements here are that the matrices V

and H0 (the initial estimate of H) must represent a distribution, i.e., their elements must
sum to 1.0, and the columns of W0 (the initial estimate of W) must also sum to 1.0.

More generally, in NMF H0 and W0 are not initialized to conform to the requirements of
PLSI. Nevertheless, as we show below, the iterations of NMF update rules can still be used
to obtain PLSI decompositions that are numerically identical to those obtained through
the EM solution of Equations 66-69. Let Wn and Hn represent the estimate of W and
H respectively, obtained in the nth iteration of NMF updates. We define the normalizing
constants

D = diag(1T W0) (81)

c = 1TDH1 (82)

c is simply the sum of all the elements of the matrix DH. Using these terms we can now
define scaled versions of W0 and H0 as:

W̄0 = W0D
−1 (83)

W0 = W̄0D (84)

H̄0 = DH0c
−1 (85)

H0 = cD−1H̄0 (86)

H̄0 and W̄0 conform to the requirements of PLSI, i.e., the sum of all elements of H0

sum to 1.0, while the columns of W̄0 sum to 1.0. Using the above normalizations, we get
W0H0 = cW̄0H̄0.

As shown earlier, initializing W and H with W̄0 and H̄0 respectively in the update
rules of Equations 79 and 80 will give us PLSI estimates of W and H (i.e., of P (x|z) and
P (y, z)). On the other hand, initializing the update rules directly with W0 and H0 will
give us NMF updates.

Let us represent the estimates of W and H obtained in the nth PLSI iteration as W̄n

and H̄n respectively. Let us represent the estimates obtained in the nth iteration of the
NMF updates as Wn and Hn respectively. Prior to proceeding, we note that for the
Hadamard multiplication operator ⊙ and for any diagonal matrix D, DW⊙D−1H = WH

and similarly WD⊙HD−1 = WH. For n = 1 we get

25

Smaragdis and Raj

H1 =

(

diag(1T W0)

)−1(

H0 ⊙W0
T V

W0H0

)

(87)

= D−1

(

cD−1H̄0 ⊙DW̄T
0

V

cW̄0H̄0

)

(88)

= D−1

(

H̄0 ⊙ W̄T
0

V

W̄0H̄0

)

(89)

H1 = D−1H̄1 (90)

In the above we have utilized the PLSI update rule of Equation 77 (which is identical
to that of Equation 79 since diag(1T W̄0) is an identity matrix). Similarly, we find that the
corresponding NMF update rule for W1 can be written as

W1 =

(

W0 ⊙
V

W0H0
H0

T

)(

diag(H11)

)−1

(91)

=

(

W̄0D⊙
V

cW̄0H̄0
cH̄0

T
D−1

)(

D−1diag(H̄11)

)−1

(92)

=

(

W̄0 ⊙
V

W̄0H̄0
H̄T

0

)(

diag(H̄11)

)−1

D (93)

W1 = W̄1D (94)

Here we have utilized the fact that diag(D−1H11) = D−1diag(H11). Note that the constant
c no longer figures in either Equation 90 or Equation 94. It is now straightforward to extend
the above development to generalize the relationship between PLCA and NMF to:

Wn = W̄n

(

diag(1T W0)

)

(95)

Hn =

(

diag(1T W0)

)−1

H̄n (96)

In the above equations we have used the expanded form of D from Equation 81.
From the above it is clear that NMF update rules may be used in the place of the

PLCA update rules of Equations 66-69, and numerically identical results may be obtained
by scaling the final W and H matrices obtained through NMF by

(

diag(1T W0)
)−1

and
diag(1T W0) respectively. Conversely, PLSI updated rules may be utilized to perform NMF
by preliminarily scaling the W0 and H0 matrices into probability densities of the appropriate
form, and factoring the scaling factor diag(1T W0) back into the final estimates. It is

worthy of note that while the
(

1TWn

)−1
term in Equation 79 is merely cosmetic within the

normalized PLSI framework, within the NMF update formulation it actually fulfils the role
of a scaling term that maintains a constant relation between the NMF and PLSI updates.

Finally, while PLSI has been defined in this paper as applying primarily to distributions,
i.e., V matrices whose elements sum to 1.0, the update rules do not change if V is unnor-
malized. Let v represent the scaling factor that would convert V to a distribution, such that

26

Shift-Invariant Probabilistic Latent Component Analysis

V = vV̄, where V̄ is normalized, i.e., its elements sum to 1.0. The relationship between
the component matrices obtained through the decomposition of V, which we represent by
W

†
n and H

†
n and those obtained from the decomposition of V̄, which we represent as before

by Wn and Hn, starting from the same initial value (W†
0,H

†
0) = (W0,H0), is easily

shown to be:

H
†
n+1 = vHn+1 (97)

W
†
n+1 = Wn+1 (98)

We briefly outline the proof for Equation 97 below:

H
†
1 =

(

diag(1T W
†
0)

)−1(

H
†
0 ⊙W

†
0

T V

W
†
0H

†
0

)

(99)

=

(

diag(1T W
†
0)

)−1(

H
†
0 ⊙W

†
0

T vV̄

W0H0

)

(100)

= v

(

diag(1T W0)

)−1(

H0 ⊙W0
T V

W0H0

)

(101)

= vH1 (102)

It can similarly be shown that W
†
1 = W1. Now assuming Equations 97 and 98 to be true

for some n, it is easy to show that they must also hold for n + 1, thereby completing the
proof through induction.

Consequently, the relationship between W
†
n and H

†
n and the corresponding matrices

obtained through PLSI decomposition of V̄ is given by

W†
n = W̄n

(

diag(1T W
†
0)

)

(103)

H†
n = v

(

diag(1T W
†
0)

)−1

H̄n (104)

Thus, given any matrix V, NMF decomposition of it can be obtained from the PLSI decom-
position of the normalized matrix V̄, similarly the PLSI decomposition of the normalized
matrix can be computed exactly from the NMF decomposition of the unnormalized matrix.

We have shown how the update equations of NMF when using the KL-like distance
are effectively identical to the EM updates of the PLCA model. Using multidimensional
versions of PLCA we can easily extend the concept of NMF to operate on non-negative
tensors of arbitrary rank, and vice versa we can apply the convolutive versions of NMF (15)
on probabilistic models.

References

[1] Brown, J.C., 1991. Calculation of a Constant Q Spectral Transform, in Journal of the

Acoustical Society of America vol. 89, pp. 425-434.

27

Smaragdis and Raj

[2] Hofmann, T., 1999. Probabilistic Latent Semantic Analysis in Proceedings of the Fif-

teenth Conference on Uncertainty in Artificial Intelligence (UAI’99).

[3] Rost, J. and Langeheine, R. Eds., 1997. Applications of Latent Trait and Latent Class

Models in Social Sciences. Waxmann, New York.

[4] Lazarfeld, P.F. and Henry, N.W., 1968. Latent Structure Analysis. Houghton Mifflin,
Boston.

[5] Lee D.D. and Seung H.S., 1999. Learning the parts of objects by non-negative matrix
factorization. Nature, Vol. 401, No. 6755. (21 October 1999), pp. 788-791.

[6] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In Advances in Neural Information Processing Systems 13, 2001.

[7] Hoyer, P.O., 2004. Non-negative Matrix Factorization with sparseness constraints, Jour-

nal of Machine Learning Research 5:1457-1469, 2004.

[8] Li, L. and Speed, T., 2000. Deconvolution of sparse positive spikes: is it ill-posed?,
University of California at Berkeley, Department of Statistics Technical Report 586.

[9] Bro, R. ”PARAFAC. Tutorial and applications”, in Chemometrics and Intelligent Lab-

oratory Systems, Volume 38, Issue 2 , October 1997, Pages 149-171

[10] Frey, B. J. and Jojic, N., 1999. Transformed component analysis: Joint estimation of
spatial transformations and image components. Proceedings of the IEEE International

Conference on Computer Vision, September 1999.

[11] Frey, B. J. and Jojic, N. 2003. Transformation-invariant clustering using the EM algo-
rithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:1, January
2003, pp. 1-17.

[12] Paatero, P. and Tapper, U., ”Positive Matrix Factorization: A Non-negative Factor
Model with Optimal Utilization of Error Estimates of Data Values”, in Environmentrics,
v.5, pp.111-126. 1994.

[13] Smaragdis, P.; Brown, J.C., Non-negative Matrix Factorization for Polyphonic Music
Transcription”, IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), pp. 177-180, October 2003

[14] Smaragdis, P., ”Discovering Auditory Objects Through Non-Negativity Constraints”,
Statistical and Perceptual Audio Processing (SAPA), SAPA 2004, October 2004

[15] Smaragdis, P., ”Non-negative Matrix Factor Deconvolution; Extraction of Multiple
Sound Sources from Monophonic Inputs”, International Congress on Independent Com-
ponent Analysis and Blind Signal Separation, ISBN: 3-540-23056-4, Vol. 3195/2004, pp.
494, September 2004 (Springer Lecture Notes in Computer Science).

[16] Papoulis, A. ”Probability, Random Variables, and Stochastic Processes”, McGraw-Hill,
3rd edition,1991. page 172.

28

Shift-Invariant Probabilistic Latent Component Analysis

[17] Cover T, and Thomas, J. ”Elements of Information Theory”, Wiley Interscience, 1991.

[18] M. Schmidt and M. Morup, ”Nonnegative Matrix Factor 2D Deconvolution for Blind
Single Channel Source Separation”, Proceedings of the International Conference on
Independent Component Analysis 2006.

[19] Shashanka, M.V.S. ”Latent Variable Framework for Modeling and Separating Single
Channel Acoustic Sources”, Doctoral Dissertation, Department of Cognitive and Neural
Systems, Boston University, August 2007.

[20] Shashanka, M.V.S., B. Raj and P. Smaragdis. ”Sparse Overcomplete Latent Variable
Decomposition of Counts Data”, Neural Information Processing Systems Conference
(NIPS), Vancouver, Canada, Dec 2007

[21] Brand, M. ”Structure Learning in Conditional Probability Models via an Entropic Prior
and Parameter Extinction”, Neural Computation vol. 11, n. 5, pp. 1155-1182, 1999.

29

	Title Page
	Title Page
	page 2

	Shift-Invariant Probabilistic Latent Component Analysis
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29

