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Abstract
In this paper, performances of stored-reference (SR), transmitted-reference (TR), and energy
detection (ED) based time of arrival (TOA) estimation techniques are analyzed for impulse-
radio ultra-wideband (IR-UWB) systems at subNyquist sampling rates. First, an additive
white Gaussian noise (AWGN) channel is considered to emphasize certain fundamental issues
related to these different transceivers. In particular, energy collection characteristics and
decision statistics are presented. Probability of accurate peak detection is analyzed for each
transceiver; and receiver operating characteristics for the leading edge are derived. Effects
of number of pulses per symbol and number of averaging symbols are investigated in detail.
Then, realistic multipath channels are addressed; and various maximum likelihood estimation
approaches are investigated. A new estimator that jointly exploits the noise statistics and
power delay profile of the channel is proposed, and a Bayesian estimator that (ideally) gives a
lower bound is analyzed. Simulation results show that while ED and TR have better energy
collection capabilities at low-rate sampling, they suffer from distributing the energy over time.
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Abstract— In this paper, performances of stored-reference
(SR), transmitted-r eference (TR), and energy detection (ED)
basedtime of arri val (TOA) estimation techniquesare analyzed
for impulse-radio ultra-wideband (IR-UWB) systems at sub-
Nyquist sampling rates. First, an additive white Gaussiannoise
(AWGN) channel is considered to emphasizecertain fundamental
issuesrelatedto thesediffer ent transceivers. In particular , energy
collection characteristics and decision statistics are presented.
Probability of accurate peak detection is analyzed for each
transceiver; and receiver operating characteristicsfor the leading
edge are derived. Effects of number of pulses per symbol and
number of averaging symbols are investigated in detail. Then,
realistic multipath channels are addressed;and various maxi-
mum lik elihood estimation approachesare investigated.A new
estimator that jointly exploits the noisestatisticsand power delay
profile of the channel is proposed,and a Bayesianestimator that
(ideally) givesa lower bound is analyzed.Simulation resultsshow
that while ED and TR have better energy collection capabilities
at low-rate sampling, they suffer fr om distrib uting the energy
over time.

I . INTRODUCTION

Ultra-wideband(UWB) is a technologythat has distinct
featurescharacterizedby its extremely wide bandwidth.Due
to high time resolution,it is arduousbut possibleto accurately
identify thefirst arriving signalcomponent.However, thelarge
bandwidthwhich is typically larger than 500MHz makes it
difficult and costly to operatereceivers at above the Nyquist
rate. Instead,energy canbe capturedat lower samplingrates
after certainanalogfront-endprocessing.

The energy detection (ED) of the signal is achieved by
passingthe signal througha square-law device, followed by
an integrator and sampler. Another option is to correlatethe
signal with a stored-reference(SR) before an integrate-and-
dumpcircuitry. The latter is more robust to noiseeffectsdue
to the template being noise-free.In order to avoid timing
andpulse-shapemismatchbetweenthe templateandreceived
signal,a transmitted-reference(TR) schemecanalso be con-
sidered,where a template is transmittedwith and matches
the transmitteddata signal with a known delay in between.
After energy capturingin ED, SR andTR via low-ratedigital
samples,leadingedgedetectionis neededfor precisionrang-
ing. Apart from the fact that eachreceiver type hasdifferent
captured-energy statistics,they also have different levels of
susceptibilitiesto timing mismatchesand responsesto sub-
Nyquist sampling.
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Typical approachesfor UWB time of arrival (TOA) esti-
mation in the literature are basedon Nyquist rate (or near
Nyquist rate) samplingof signals [1], [2], using an SR [3],
[4], and an ED [4], [5] receivers. A coarsetiming estimate
of a signal can be achieved by maximum energy selection
(MES) [3], [5], [6]-[10]. Someotherdetectionrelatedwork in
the literature includes[11], wheredetectionperformancesof
IR-UWB signalswith a squarelaw device were investigated,
and [12], wherereceiver operatingcharacteristics(ROCs) for
coherent UWB random noise radars have been analyzed.
Detection performancesof weighted square-law and cross-
correlationUWB receiversareanalyzedin [13]. In [14], anin-
depthanalysisof signalacquisitionusingmatchedfiltering and
ED is carriedout. Acquisition is achievedusinga generalized
likelihood ratio testing (GLRT) and noisy templatesin [15],
[16]. On the other hand,a coherentacquisitionschemewith
low-rate samplesis discussedin [17], which shows that the
complexity can be reducedby sub-sampling.Oncean initial
acquisitionis achieved,precisearrival of the leadingedgecan
beestimatedby variousthresholdingtechniques[1], [18], [19].
Trade-offs betweenSR and TR transceiver typesfor symbol
detectionareaddressedin [20].

The performancetrade-offs and comparisonof different
transceiver typesfor UWB timing estimationis not available
in the literature to the best knowledge of the authors. In
this paper, SR, TR, and ED basedreceivers and timing es-
timation schemesoperatingat sub-Nyquistratesareanalyzed
and compared.Our contributions are as follows. First, with
the assumptionof additive white Gaussiannoise (AWGN)
channels,statistics and energy collection characteristicsof
the three transceiver types are addressed.Then, peak selec-
tion error, leading edgedetectionerror (conditionedon the
energy capturecharacteristicsof the transceivers at low-rate
sampling),and effects of pulse compression(increasingthe
numberof pulsesper symbol)andprocessinggain achievable
from replicatesymboltransmissionsarediscussed.Afterwards,
the TOA estimationperformanceis analyzedundermultipath
channelsvia likelihoodbasedestimators.A Bayesianestimator
algorithmthat ideally givesa lower boundis presented.

I I . SYSTEM MODEL

While the transmittedsignalstructuresarethesamefor SR
and ED receivers, TR includesdelayedversion of the same
signal, and thereforeyielding a slightly different transmitted
signal model. Let the received UWB signal in multipath
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Fig. 1. Illustration of IR-UWB pulse transmissions in a sym-
bol, where
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spondto ED andSR.Dashedpulsescanbeincludedfor TR (afterappropriate
energy scaling)with . �/' � � .
channelfor the former schemesbe representedas02143#576 89:);=< 8 > :@?BA	CED 3BF/G�HJIKFML : HJN�FPO@Q�R)SUTV W*X YZ#[*\ Q4]

^`_ 143#5Ka (1)

while for the TR casethe received signal is modeledbyb02143#5	6 cd e D 0�fU1�3#5 ^ 0$fU143=FMgh5 T ^i_ 1�3#5Ka (2)

whereframe index and frame durationare denotedby G andHEI , HJN is thechip duration,H f is thesymbolduration,and O@Q�R�S
is theTOA of thereceivedsignal.Effectivepulseafterchannel

effects is given by ? A	C 143#5	6kj lEmn [porqs ;utJv s ? s 143=FPO s 5 , where? s 143#5 is thereceivedUWB pulseat w th tapwith unit energy, xzy
is the symbol energy (we assume{ f pulsesper symbol), v s
and O s are the fadingcoefficientsanddelaysof the multipath
components,respectively, and o qs ;ut vu|s 6 c . The AWGN
with zero-meananddouble-sidedpower spectraldensity}�~$� e
and variance � | is denotedby

_ 1�3#5 . The delay betweenthe
data and referencesignals1 is denotedby g , and energy is
appropriatelyscaledso thatenergy per symbolis identicalfor
all cases.No modulationis consideredfor therangingprocess.
In orderto avoid catastrophiccollisions(large numberof hits
betweenthe pulsesof differentusers),andsmooththe power
spectraldensityof the transmittedsignal,time-hoppingcodesL :h����� a c a�������a {�� F c�� are assignedto different users,with{�� 6�H I � H N denotingthenumberof chip positionsper frame.
Moreover, random-polaritycodes

> :����U� c�� are usedto get
additionalprocessinggain for the detectionof desiredsignal,
andsmooththe signalspectrum(seeFig. 1).

A. Sampling the Received Signal After Different Energy Col-
lection Techniques

The signal arriving at the receiver’s antennais passed
through a low noise amplifier (LNA) and a band passfilter
(BPF) of bandwidth � . Dif ferent approachesfor collecting
the energy are possible before sampling the signal in (1)
or (2). The received signal can be sampledafter correlation
with a stored-referencesignal (Fig. 2a), after correlationwith
a transmitted-referencesignal (Fig. 2b), or after a square-law
device (Fig. 2c). Block duration (which correspondsto the
samplinginterval) is denotedby H y , and is equivalent to H N

1Even though we refer the pair of signals in TR as referenceand data
signals, this is just for the sake of distinction, and we considerno data
modulationfor rangingpurposes.
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Fig. 2. Samplingof the received signal after a) Correlationwith a local
reference,b) Correlationwith a transmittedreference,andc) Energy detection.

for chip-spacedsampling. In the sequel,we assumethat a
coarseacquisitionon the order of frame-lengthis acquired,
such that in (1) O Q�R)S���� 1 � a#H I 5 , where � 1���5 denotesthe
(continuous)uniform distribution. The block index that con-
tainsthefirst arriving signalenergy is correspondedby

_ Q�R�S �� c a e a�������a { Q�R)S � , where { Q�R�S 6��U�� m . The signal within time
frame H I plus half of the next frameis sampledandsearched
to factor-in inter-frame leakagedue to multipath. Thus, the
numberof samples(or blocks/chips)within the TOA search
region is given by {�y 6��| ���� m , and

_ ��� c a e a�������a _ Q�R�S a�������a {�y �
denotesthe sampleindex with respectto the startingpoint of
the uncertaintyregion.

With a samplinginterval of 3#f , the SR templatesignaland
thesamplescollectedaftercorrelatingthereceivedsignalwith
this templatearegiven by,

� Q ApC 1�3#5p6 n [ <Jt9:); ~ > : ? D 3=F/G�H I FML : H N T a (3)� \ f Z ]  6¢¡ \�  <Jt ]£Q [#¤ n [ ���\�  <Et ]£Q [ 02143#5#��Q A	CuD 3uF¥1 _ F c 5¦3 f T > 3§a (4)

respectively, where ? denotesthe correlator pulse shape2.
Sinceno channelestimateis available prior to signal acqui-
sition andTOA estimation,absolutevaluesof SR outputsare
used(asshown in Fig. 2), yielding

b� \ f Z ]  6k¨ � \ f Z ]  ¨ .
The samplesat the outputof the square-law device are

� \�©�ª ]  6 n [9:);ut ¡ \ :@<Et ] ��� ¤ \ N�« ¤   ]£Q [\ :@<Et ] ��� ¤ \ N « ¤   <Jt ]£Q [ ¨ 02143#5�¨ | > 3¬a (5)

while the samplesafter correlatingwith the delayedversion

2Note that sincereceived pulseshape¯® canchangeat differentmultipath
componentsdue to its large bandwidth,  will not typically matchwith the
received pulse shapes.However, we have used  � ¯® for all ° in the
simulationsfor simplicity.
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of the signal itself is formulatedas� \ Q Z ]  6 n [9:);Bt ¡ \ :@<Jt ] �U� ¤ \ N « ¤   ]£Q [\ :@<Et ] ��� ¤ \ N�« ¤   <Et ]£Q [ b0¯143#5 b0¯143=FPg�5 > 3§� (6)

In the TR caseaswell, the absolutevaluesof the samplesare
usedto yield

b� \ Q Z ]  6²¨ � \ Q Z ]  ¨ . The performancecan be further
improved by having a processinggain from multiple symbol
transmissions.Note that averagingmust be performedprior
to absolute-value operation.In what follows, we refer to the
numberof symbolsas { f¦³ A .

B. Trade-offs Between Different Transceiver Architectures

It is very well known that matchedfiltering, in which a
storedreferencetemplateis correlatedwith thereceivedsignal,
is optimal detection techniquewhen the knowledge of the
received waveform shapeis available.However, Nyquist-rate
samplingis essentialto matchwith thereceivedsignal,so that
perfect alignmentwith the templateand received waveform
canbe obtained.If only lower samplingratesarepossible,it
is apparentfrom (4) that the SR will not be able to collect
sufficient energy from the received multipath arrivals due to
timing mismatches(andpulseshapedistortions).

Ontheotherhand,ED andTR signalingcanbotheffectively
capturethe received energy. Even at sub-Nyquistsampling
rates,neitherschemerequiresthe knowledgeof the sampling
timing or pulse shapes(assumingaccuratedelay lines for
the TR case).The existenceof the TR pulse yields a ´ dB
transmittedenergy losscomparedwith theothertwo schemes.
Illustrationof thetiming susceptibilityfor SR,TR, andED are
presentedin Fig. 3. If asufficientsamplingrateis available,the
SRwill bettercharacterizethepeak;however, at low sampling
rates(e.g. 3#f�µ c ns), it becomesmore likely for SR to miss
the peak.

Note that in non-coherentapproachesthe enhancednoise
termsin the low SNR region becomesan issue.In particular,

noise-squaretermsfor theED, andnoise-cross-noisetermsfor
TR seriouslydominateanddegradethedetectionperformance.
Therefore,even thougha non-coherentapproachoutperforms
the SR at high SNR due to better energy captureat sub-
Nyquist sampling rates, they have poor performancewhen
the noisevarianceis large. Moreover, non-coherentschemes
suffer from degradedSNR when symbol energy is spread
over more pulses,whereasenergy in an SR symbol can be
distributed over multiple pulseswith no SNR loss. Due to
similar reasons,TR and ED are much more susceptibleto
interferencecomparedto SR.A cross-correlationreceiver can
also be consideredinsteadof TR (as in [13]), which yields
identicalenergy capturewith ED but a smallernoisevariance.

Comparing the transmittedwaveforms, TR has a longer
time spancomparedto ED and SR, and g has to be large
enoughso that multipath interferencebetweenreferenceand
data pulses is not a serious problem. Also, TR observes
enhancedearly/late(E/L) noise terms that arise when either
the referenceor data signal samplesare correlatedwith the
noise-onlysamples.This scalesthe noisevarianceat � g of
theactualTOA by thesignalenergy. Finally, thedelayedsignal
from a previousframemayaffect the resultsfor TR receivers,
and g parametershouldbe selectedcarefully consideringthe
framedurationandthemaximumexcessdelayof thechannel.

In the next sections,first, an AWGN channelis considered
to highlight certainpointsrelatedto differenttransceiver types.
Someof the fundamentaltrade-offs discussedin this section
areexpandedin detail.Later, underrealisticmultipathchannel
models,maximum likelihood techniquesfor time of arrival
estimationaregiven.

I I I . AWGN CHANNEL ANALYSIS

UWB receivers typically observe dispersive channelsthat
have hundredsof multipathcomponents.However, it is more
usefulto analyzecertainfundamentalaspectsrelatedto signal
acquisition and leading edge detection in less complicated
scenarios.In this section, we consider an AWGN channel
( ¶ 6 c , v t 6 c , O t 6 � ), and analyzeperformancetrade-
offs betweendifferenttransceiver types.In particular, decision
statistics(for singleandmultiple pulsesper symbol),aswell
as energy collection characteristicsunder timing mismatch
(dueto sub-Nyquistsampling)are investigatedin detail.Peak
selectionperformancesare comparedfor the three schemes,
which is closely tied with signal acquisition.Then, leading
edge detectioncharacteristicsare analyzedby conditioning
the detectionprobability on the leading edgeenergy, which
dependson the transceiver’s energy collectioncapability.

A. Decision Statistics

As in any detectionor estimationproblem,theperformance
dependson decisionstatistics,which are derived from � \�©�ª ]  ,� \ Q Z ]  , and � \ f Z ]  for the problemin hand(prior to any absolute
value operationfor SR and TR). Due to nature of the ac-
quisition and leadingedgeestimationproblem,no parameter
estimates(i.e., the channel estimate) are available to the
receiver, which makes the receiver strictly sub-optimal [14].
Below, we assumea Gaussianapproximationof the signal



4

TABLE I

COMPARISON OF OUTPUT STATISTICS FOR DIFFERENT TRANSCEIVER

TYPES.

SR TR ED·�¸�¹ & & � �*º/»�¼» ¼¸�¹ ½ [�¾�¿½ [�À#Á ½ [)Â ¾�Ã,Ä2¾$¿�Å m¿½ [�À�Á ¼ ½ [ Â ¾�Ã½ [�À�Á· � ¸ � �$Æ Ç m½ [ �/È � �)É � É ��Ê ' � �,º/»�¼ + É �»Ë¼� ¸ ½ [�¾�¿½ [�À#Á ½ [ Â ¾�Ã,Ä ¼ ¾$¿�Å m¿½ [�À�Á ¼ ½ [ Â ¾ Ã ÄÍÌÎ¾ ¿ Ç m½ [�À�Á
statisticsfor TR andED, which is valid for large ÏÑÐÒ{ f and
becomesmore accurateif the signal is averagedover large
numberof symbols.M denotesthe degreeof freedomof the
noisesuchthat Ï 6 e � 3 f ^ c .

Consider a scenario where ideal sampling instants are
assumed,and 3#fÓ6ÔH N . Using a normalizedtemplateat the
receiver, the output of the correlatoris given by

d xzy in the
presenceof signal, and the noise variance is given by � |
regardlessof thepresenceof thesignal.On theotherhand,the
capturedsignal energy is x`y for ED, and xzy,� e for TR (due
to referencepulse). The arising noise-cross-noiseterms and
noise-squaretermsenhancethe noisevariancein TR andED,
respectively. Notethatbeforeany absolute-valueoperation,ED
is the only schemethat hasa non-zeronoise-mean(but also
hasa larger energy offset comparedto the others).When { f
pulsesper symbol are used,and/or the samplesare averaged
over { f¦³ A symbols,thestatisticscanbeeasilyshown to yield
thevaluesin TableI, wherenotations(no) and(sn)correspond
to noise-onlyandsignal-plus-noisecases3.

After the samplesof SR and TR are fed into the absolute
value operator, their statistics obviously change.However,
their distributionscanbe still derived in termsof the statistics
of the original Gaussianparameters.In the presenceof signal,
the distribution of

b�$f   6k¨ �$f   ¨ (i.e. the absolutevaluesof the
samplesfor SR andTR as illustratedin Fig. 2) canbe easily
formulatedas4

Õu1 b�$f   5p6
Ö××××Ø ××××Ù
� if �Uf  �Ú � atd |)Û�Ü ¿[�ÝßÞ$à@á2âhã F \�ä [�Ý <æå [�Ý ] ¿|�Ü ¿[�Ý ç^ à@á2â ã F \ < ä [�Ý <èå [�Ý ] ¿|)Ü ¿[�Ý çèé if �Uf  �ê � a

(7)

which for ë f  Pì � becomesthe specialcasefor noise-only
samplesÕB1 b�   R 5p6 ÖØ Ù � if �   R Ú � a|d |)Û�Ü ¿Ý�í à@á2â ã F ä ¿Ý�í|�Ü ¿Ý�í ç if �   R ê � a (8)

andabove formulationsstill allow using Q-functionsto eval-
uate the detectionerrors. Note that if SNR is large, as an
approximation,the secondexponential term in (7) may be
neglected(sincethe areaunderthe tail will be negligible).

3For the rest of the paper, we neglect the effects of time-hoppingand
polarity randomizationcodes(i.e. �� � & and "# �î(

for all ï ) for the
simplicity of analysis.

4See [21] for calculating the probability density function (PDF) of a
function of a randomvariable.

B. Peak Selection Error

Acquisitionof an UWB radio signalis commonlyachieved
by peakselectionof the received signalsamples,which gives
a coarseTOA information. The leading edgedetectioncan
thenbe performedusingdifferentsearch-backschemes.Con-
sideringa single-tapchanneland alignmentof the sampling
instantswith chips, the probability of peakselectioncan be
formulatedas( �   denotesany of � \�©�ª ]  ,

b� \ f Z ]  , or
b� \ Q Z ]  )ð C f 6 ð 1�ñ_ 6 _ A S*ò�56 ¡ 8ä Ý Áuó#ô ; ~ ð 1�� t Ú �  �Áuó#ô 5 ð 1�� | Ú �  �Áõó)ô 5 Ð �����Ð Õu1��   Áuó#ô 5 ð 1��   Áõó)ô@¤ t Ú �   Áõó#ô 5 Ð �����Ð ð 1�� n m Ú �  �Áõó)ô 5 > �  �Áõó)ô a (9)

where
_ Q�R�S 6 _ A S*ò denotesthe location of the peak.After

somemanipulation,(9) yieldsð C fö6 ¡ 8ä#Ý Áõó#ô ; ~ø÷ c FPù¬ú ã �  �Áõó#ô F ë   R�   R çæû n m <Et Õu1��  �Áõó#ô 5 > �  �Áuó#ô a
(10)

where �  �Áõó)ô � } D ë f   a � |f   T , ùÑ6 c for ED and ùÑ6 e
for SR or TR. Note that the secondexponential in (7) is
neglectedfor simplicity, which yieldsa goodapproximationas
will be comparedlater with the simulations.The probability
of erroneouslyselectinga noise-onlysampleas the peak is
thengiven by ð C f © 6 c F ð C f � (11)

C. Leading Edge Detection and Effects of Non-Ideal Sampling
Instant

If samplinginstantsare alignedwith chip positions,sam-
pling the received signal at chip-ratewould be sufficient to
capturethe correlationpeaks.However, due to lack of syn-
chronizationthe received signal may arrive anywherewithin
the sampling block. Therefore, how finely the correlation
peaks(and the leading edge) are characterizeddependson
the samplingrateof the received signal,aswell as receiver’s
energy output characteristics.In Fig. 3, the pulseshapeused
in this paper(root raisedcosinepulse),andtheenergy outputs
of theSR,TR, andED areshown. For a uniformly distributed
TOA, eachof the samplesbecomeequally likely to be the
leadingedgesample,andthePDFsandcumulativedistribution
function (CDFs)of the leadingedgeenergy sample(i.e., x s © )
canbe easilyobtainedfor different transceivers.

In order to analyzethe leadingedgedetectionperformance
of different transceiver types in AWGN channels,consider
a 1-tap channeland chip-spacedsampling,where the pulse
durationis equalto the chip interval. Then,the receivedpulse
may arrive anywherewithin the first energy block, implying
that an energy samplemay contain only a fraction of the
entire pulse energy. As discussedbefore, the PDF of this
fractional energy will changefor different transceiver types.
Using Neyman-Pearsontheory, the thresholdthat maximizes
the detection probability can be found for a given false-
alarmprobability. In the absenceof the signal,the falsealarm
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probability can be definedas the probability of erroneously
selectingü thenoise-onlysampleasa signal-containingsample,
and is given by ð I�SK6rù¬ú ÷pý F ë   R�   R û a (12)

and for a fixed
ð I$S , the thresholdis given by

ý 6 �   R ú <Jt ÷ ð I�Sù û ^ ë   R � (13)

Given the threshold for a particular
ð I$S , the detection

probability of the leadingedgecan be obtainedfor different
transceiversby averagingover thePDFof x s © . For a multipath
channel,the detectionprobability of the leadingedgecan be
definedto be probability of accuratedetectionof the leading
edgeafter searchingback the samplesprior to the maximum
energy sample.However, dueto cumbersomechannelstatistics
causedby multiple clustersand delay spread,and diversity
of acquisitionandleadingedgedetectiontechniques,suchan
analysisis not followed in this paper. Instead,we definethe
probability of detectionfor the leadingedgeasðBþ 6 ¡ 8~ ð 1�� s © µ ý 54Õu1 x s © 5 > x s © a (14)

where
ð 1�� s © µ ý 5 using (7) is given by (assumingED hasa

large noiseoffset)ð 1�� s © µ ý 5	6
ÖØ Ù c FMú ã å�ÿ��@<��Ü ÿ�� ç ^ ú ã å�ÿ�� ¤ �Ü ÿ�� ç if SR or TR ac FMú ã å�ÿ��@<��Ü ÿ�� ç if ED a

(15)x s © is the instantaneousleading edge energy, whose PDF
can be obtainedfrom the correlation functions of the three
differenttransceiver types(Figs.3), and ë s © a � s © arethe mean
andthe standarddeviation of the leadingedgeenergy sample,
respectively. Regardlessof the leading edge searchscheme
after acquisition,(14) characterizeshow likely we can detect
the leadingedgeonce/if we reachit.

IV. MULTIPATH CHANNEL ANALYSIS AND L IKELIHOOD

BASED TOA ESTIMATION

In realistic multipath channels,the detectionperformance
of the leadingedgedefinedin previoussectionis not the only
measureof the timing estimationerror, andchannelstatistics
suchas the numberof clusters,delay betweenthe peakand
the leadingedgeetc. shouldbe taken into consideration [9],
[22]. Sincetheremay be a large delaybetweenthe peakand
the leadingedge,typically, any of thesamplesthatarrive later
(or earlier, dependingon the algorithm)thanthe leadingedge
may be selectedasthe TOA, andthusclosedform theoretical
error expressionsare non-trivial due to cumbursumechannel
characteristics.

In order to illustrate the timing difference betweenthe
strongestsampleand the leading edgesample,considerthe
CM1 channelmodelin [23]. The CDF of the delaysbetween
the maximumenergy sampleandthe leadingedgesamplefor
thischannelmodelarecomparedfor differenttransceiver types
in Fig. 4 with and without path offset within the first energy
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Fig. 4. CDFs of delaysbetweenpeakand leading edgefor SR, TR, ED
( � �=� � � � ( ns),andwith andwithout pathoffsetswithin first energy block.

block5. While choosingthe peaksyields a closer timing to
the leadingedgefor SR in the first scenario,ED andTR has
bettercharacteristicsat low samplingrateswhenno first-path
synchronizationis assumed.

Due to this large possibledelay betweenthe peakand the
leadingedge,peakselectionfails to give accuratetiming esti-
mates,andmoresophisticatedalgorithmsarerequired.In this
section,ratherthanthresholdbasedtechniquesasin [18], [19],
[22], we considerlikelihood basedestimationof the signal
timing. Starting from a simple peak selectionthat discards
the energy informationin the neighboringsamples,maximum
likelihood methods of different complexity levels (and a-
priori information requirements)will be analyzed.Since the
location of the peak is assumedunknown, the techniquesto
be discussedmay alsobe usedfor initial signalacquisition.

A. Problem Formulation

Let � denote6 the c Ð	{�y vectorof samples�   , { © denotethe
numberof signal plus noiseenergy samples,� \�  R)]� and � \ f   ]�
denote(for the � th hypothesis)the noise-onlyenergy vector
and signal plus noiseenergy vector of sizes c Ð 1 {�y F { © 5
and c ÐP{ © , respectively, wherevectorson the two sidesof
signalplus noisevector � \ f   ]� areconcatenatedto yield � \�  R#]� .
Consideran ED with { f�6 c . Then, the following multiple
hypothesistestingcanbe formulatedfor � 6 c a e a�������a { Q�R)S� �	� �   6�
   � m\�  <Jt ] � m�� | 1�3#5 > 3*a _ 6 c a�����a � F c�   6 
   � m\�  <Jt ] � m� 0 f 143#5 ^ � 143#5�� | > 3*a _ 6 � a�����a � ^ { © F c�   6 
   � m\�  <Jt ] � m � | 1�3#5 > 3*a _ 6 � ^ { © a�����a { y

(16)

5We definethe path offset to be the relative time differencebetweenthe
first arriving path and the beginning of the leadingedgeblock. As implied
by the discussionin SectionII-A, it is assumeduniformly distributed.

6The samples � ¸ in the sequel correspondto ���������¸ . However, similar
analysismay alsobe easilyperformedfor � ¸ being ���� ��� �¸ and ������ � �¸ .
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where � 143#5 is the noiseafter the BPF (signalpart is assumed
to be undistorteddue to BPF), and

�  �� í�ó is the correct
hypothesis.Note that maximumlikelihood estimationof the
correcthypothesisrequiresthechannelstatisticsandthenoise
varianceinformation.

Using the Chi-squarestatistics[24] that arise due to the
square-law device, (16) becomes� � � �   6 �71 Ï 5@a _ 6 c a�������a � F c�   6 �71 x   a Ï 5@a _ 6 � a�������a � ^ { © F c�   6 �71 Ï 5@a _ 6 � ^ { © a�������a {�y (17)

where Chi-squarerandom variable is denotedwith � , with
parameterÏ for the centralized,andparameters1 x   a Ï 5 for
non-centralizedcases,respectively. The signal energy in the_

th block is denotedby x   .
For notationalconvenience,defineindex ! ��� c a e a�������a { © �

for the signal plus noiseenergy vector for the rangeof �#"_ "$� ^ { © F c , where ! 6 _ F � ^ c , and % A 6 x   .
Gaussianapproximationcan be usedto model �   for large
enough Ï , where the meansand variancesbecome ë   6Ï�� | , � |  6 e Ï��'& for the centralized,and ë   6 Ï�� | ^x   , � |  6 e Ï��'& ^)( � | x   for the non-centralizedChi-square
distributions.

B. Maximum Likelihood Estimation

Typically, { © in (16) is much larger than c for H y values
on theorderof pulseduration,andthesignalenergy is spread
over many blocks. The coarsestway of obtaining a time of
arrival estimateis themaximumenergy selection(MES) from
the individual energy samplesby neglecting the information
in the neighboringsamples,which yieldsñ_ \ A © f ]Q�R)S 6 *�+-,/.0* á��132 t54�6�6�6�4 n m�7 8 � �:9 � (18)

However, MES is susceptibleto noisesincetheenergy in only
a single sampleis used,and it doesnot provide high timing
resolutionas theremay be a large delaybetweenthe leading
edgeand the maximumenergy block (seeFig. 4).

In order to exploit the energy in the neighboringmultipath
components,energy samplescanbesummedwithin a window.
With a window duration of {	;<" { © blocks, the leading
block estimateusingmaximumenergy sumselection(MESS)
is given byñ_ \ A © f�f ]Q�R�S 6 *�+-,/.0* á��132 t54�6�6�6�4 n m 7 = � \ f   4 n?> ]� Ð c n?>A@ a (19)

where c n > is a column vector of ones of length { ; , and

MESScollapsesto MES for {B; 6 c . The vector � \ f   4 n?> ]� is
composedof first {B; elementsof � \ f   ]� . Since a very large
window lengthcapturesa lot of noiseandsmallwindow length
doesnot capturesufficient energy, there exists an optimum
window length that changeswith the channel model and
the xzy,�*{ ~ , which we will demonstrateusing simulations.
Note that (19) is similar conceptuallyto the synchronization
algorithm in [5] except the window definitionsand signaling
schemes([5] usesa direct-sequenceUWB signaling).How-
ever, theoptimality of thewindow lengthwasnot investigated
beforeto our bestknowledge.

If a-priori knowledgeaboutthechannelpower delayprofile
is available, we proposeto use it to weigh the hypothesized
energy vector, which yieldsñ_ \ ; A © f�f ]Q�R)S 6 *�+-,/.0* á�C132 t�4�6�6�6�4 n mD7 = � \ f   4 nE� ]� ÐGF nE� @ a (20)

where F n � is the columnvectorof c Ð�{ © meanenergiesfor
a particularchannelmodel and block duration.In [9], mean
energieswith respectto block index have beenpresentedfor
CM1 andCM2, and for H y 6 ( ns, which we alsousefor our
simulations.Note that the weighted-MESS(W-MESS)in (20)
is actuallyequivalentto correlatingthe receivedenergy vector
with the meanenergy valuesbeforepeakselection.

Careful observation of (16) shows that for correct
� � , the

noiseparametersñë \�  R)]� and ñ� \�  R)]� are minimized. Therefore,
weighing the energy sum in (20) with the inverseof ñë \�  R)]� Ðñ� \�  R)]� (referredto as W | -MESS) will increasethe likelihood
of thecorrecthypothesis.TheproposedTOA estimatefor W | -
MESSthenbecomesñ_ \ ; ¿ A © f#f ]Q�R�S 6 *�+-,/.0* á�C132 t54�6�6�6�4 n m 7 H � \

f   4 n?� ]� ÐGF nE�ñë \�  R#]� Ð ñ� \�  R#]� I � (21)

Note that for both W-MESS and W | -MESS, even if the
power delay profile is not exactly available, an appropriate
exponentialcanbeusedto weighttheenergy vectorto enhance
the performanceof the MES.

C. Bayesian Estimation

Thetechniquesdiscussedin theprevioussectionassumethe
knowledgeof the power delay profile, which is the average
energy within individual blocks. If the distribution of % A are
known a-priori for eachenergy block ! , andnoisevariance� | is known accurately(both of which areextremelydifficult
in most cases),an optimal solution can be developedusing
a Bayesianapproach(see[25] for a discussionon Bayesian
estimators).We then estimatethe leading energy block as
followsñ_ \KJ ³�f ]Q�R�S 6 *�+-,/.0* á��132 t54�6�6�6�4 n m 7 H ¡MLONE¡ML ¿ ����� ¡MLQP � ÕB1�� ¨ � a � | a % 5Ð Õu1 % t 5*����� Õu1 % nE� 5 > % nE� ����� > % t I a (22)

where % 6SR % t a % | a�������a % n?��T is the vectorof signalenergiesin
the signalplus noiseblocks,the distribution function is given
by (which canbe simplified further)Õu1�� ¨ � a � | a % 5p6 � <JtU  ;ut cV e�W � |  R à@á2â ÷ F 1��   F ë   R�5 |e � |  R û

Ð � ¤ n?� <EtU  ; � cj eXW � |f   4 A à@á2â ÷ F 1��   F ë f   4 A 5 |e � |f   4 A û
Ð n � í�óU  ; � ¤ n � cV e�W � |  R à@á2â ÷ F 1��   F ë   R�5 |e � |  R û a

(23)
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where! 6 _ F � ^ c , andthenoise-onlyparameters1 ë   R�a �   R�5
and signalü plus noise parametersat the ! th energy sample1 ë f   4 A a � f   4 A 5 are calculatedfrom Table I using % and � .
The PDFsof elementsof % within c ��� discretebins in 1 � a c 5
are presentedin [9], which we also use in the simulations,
anddo not repeatheredueto spacelimitations. It is desirable
to choose{ © on the orderof maximumexcessdelay to have
accurateestimates.

Note that in order to keep the problem analytically
tractable,(22) assumesthat the energies % A areuncorrelated.
The ideal Bayesianestimatorshouldconsiderthe joint PDFs
of the energies, which is very difficult to extract from the
channelmodels.

Since it is usually very hard to know the prior PDFs of
the parameters,and it requiresmultidimensionalintegration
over the PDF of each parameteryielding a very complex
implementation,Bayesiananalysis is usually of theoretical
interest and serves as a benchmarkfor other sub-optimal
estimatorsratherthan for practicalconsideration.

V. NUMERICAL RESULTS

Computersimulationsare performedto comparedetection
performancesof different transceiver typesin AWGN and in
multipath channels.A raised cosine pulse of H N 6 c ns is
consideredfor all scenarios,andthereceivedsignalis sampled
at c ns for AWGN channel, and c ns or

(
ns for multipath

channels.The delay g is set to Y � ns for TR.
For AWGN channel simulations, peak selection perfor-

mancesand ROCs of the different transceiver typesare ana-
lyzed for various {�y , { f , and { f¦³ A with andwithout perfect
alignmentof samplinginstantsto chip intervals.

In multipathscenarios,thechannelmodelsCM1 (residential
LOS) and CM2 (residential NLOS) of IEEE802.15.4aare
used.The channelrealizationsare sampledat Z GHz, c �����
different realizationsare generated,and eachrealizationhas
a TOA uniformly distributedwithin 1 � a#H I 5 . After introducing
uniformly distributed delays(first path may arrive anywhere
within the first signal block), energies are collected within
non-overlapping windows to obtain decision statistics.The
other simulation parametersare HJI�6 e ��� ns, � 6 ( GHz7,{ f 6 c , and only a single rangingsymbol is used.Both c ns
and
(
ns areconsideredfor H y , with corresponding{ © of c ���

and
e/[

, respectively, so that significantmultipath energy can
becaptured.For all thesimulationstheTOA estimateis taken
to be the centerof the block estimate,and timing errorsare
averagedover c ����� differentchannelrealizations.

A. AWGN Channel Simulations

1) Peak Selection Error: In Fig. 5, theoreticalpeakselec-
tion errors are comparedfor different settingsof { f (to be
comparedwith simulationsin Fig. 6). For perfectsynchroniza-
tion, SR outperformsthe other transceiver types. Moreover,
SR is not affected from increasingnumber of pulses per
symbol, while ED and TR performancesseriously degrade

7Note that for a samplinginterval � �=� ( ns, the samplingratecorresponds
to
( Ê,± of the requiredNyquist rate.
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with increasing { f (as also implied by Table I). Effects of{ f�³ A on peakselectionerror are presentedin Fig. 7, where
SR is seento betterbenefitfrom the processinggain.

2) Leading Edge Detection Simulation Results: In orderto
assessthe leadingedgedetectionperformances,a uniformly
distributed O Q�R�S is considered,and the detectionperformance
of the leadingedgeis analyzed.In Fig. 8, theoreticalROCs
(
ðuþ

vs.
ð I$S ) of different transceiver types are shown for

two different x`y,�@{ ~ values (see Fig. 9 for the simulation
results). While SR performedwell for peak selectionwith
perfectsynchronization(in previousfigures),its ROC is worse
than the other two transceivers when timing mismatchesare
considered.This is dueto theenergy collectioncharacteristics
of different transceivers. Note that ROC is the worst for the( [_^

line, which may be obtainedusinga detectorthat ignores
all the data (i.e., by tossing a coin) [25]. When { f µ c ,
as expected, the performanceof SR is not affected, and
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degradationsareobserved in the performancesof TR andED
(seeFig. 10).

B. Multipath Channel Simulations

Effect of window length for MESS on timing error are
investigatedin Fig. 11throughFig. 15.It is seenthatregardless
of the window length { ; , SR has a worse performance
comparedto ED andTR due to undersampledsignaland the
energy collection characteristics.On the other hand,Fig. 14
andFig. 15 show that optimal window length is around ´ � ns,
which is on the order of delay spreadof the channel.Thexzy*�*{ ~ valuesfor CM2 areselectedhigherthanCM1 asCM2
hits the error floor at higher xzy*�*{ ~ .

Note that theseresultsdo not contradictwith the results
presentedin [14] (where SR outperformsED) due to two
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important reasons.First, in [14], multiple acquisitionframes
are considered,where SR hasbettercharacteristicsover ED
and TR. Second (and more important) reason is that we
considerthe averagetiming error of the peak with respect
to the leadingedge,assumingthe presenceof the signal.As
implied by Fig. 4b, when there is a random timing offset
within the first energy sample,the delay betweenthe peak
is larger on the averagefor SR comparedto TR and ED.
Therefore,regardlessof the detectionperformanceof SR, its
meanabsoluteerror (MAE) may be worsecomparedto other
two schemesdue to their correlationand energy collection
characteristics.

The MAE of the TOA estimatesfor the techniquesthat
requirea-priori channelknowledgeare presentedin Fig. 16
for the ED (CM1, H y 6 ( ns). The Bayesianestimationis
obtainedusing the histogramsof the signal energies within
first { © 6 e/[

blocks. While it yields a lower boundat high
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xzy*�*{ ~ , the Bayesianestimateis not as good at low xzy*�*{ ~ .
This may be explained with the fact that % A are assumed
uncorrelatedasdiscussedin SectionIV-C. Also, smallnumber
of samplesavailable(which maybeinsufficient to bemodeled
via the PDFs), the mismatchbetweenthe PDF and current
realization(which may changeslightly due to randomtiming
offsets),or the inaccuracy of the Gaussianapproximationof
Chi-squarestatisticsmay be the other reasonsaffecting the
optimality of Bayesianestimator. On the other hand, it is
seenthat W | MESS significantly outperformsMES, and has
a reasonablylow complexity, requiringpower delayprofile of
thechannel.Also, thefour timesdecreasein thesamplingrate
yields a c ns increasein the error floor for the performanceof
MES (to be comparedwith Fig. 13 for {B; 6 c ).

VI . CONCLUSION

In this paper, timing estimationfor IR-UWB systemsis
analyzedfor different transceiver types. Theoreticalexpres-
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sions for peak selection error and leading edge detection
performancesarepresentedin AWGN channelswith sampling
rate constraintsand by considering the energy collection
characteristicsof the transceivers. Processinggain is shown
to be better exploited by SR comparedto TR and ED. In
multipathchannels,optimal window lengthfor peakselection
is shown to be on the order of delay spreadof the channel.
Simulation results show that performanceof peak selection
can be enhancedby likelihood basedmethodsthat make use
of channelinformationandnoisestatistics.

When an under-sampledsignal is considered,SR, even
though not observingnon-coherentcombining loss, is more
susceptibleto timing mismatches(andthus,sub-Nyquistsam-
pling rate effects) comparedto TR and ED. In order for
stored-referenceto have accuratetiming and efficient energy
capture,high sampling rates on the order of Nyquist rate
are required.However, SR still has certain advantageseven
at low samplingrates.Consideringthe fact that the samples
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are requiredto be averagedover a long preamblein order to
achieve precisionrangingrequirementsof wirelessnetworks,
SR is more beneficial as it does not observe non-coherent
combiningloss.Spectralmaskandpeakto averagepower ratio
requirementsof regulatory agenciesmay also enforceusing
multiple pulsesto distribute the energy over time, which is in
favor of SR.
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