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Abstract

We propose a compressed domain video object segmentation method for MPEG or MPEG-
like encoded videos. Computational superiority is the main advantage of the compressed
domain processing. In addition to computational advantage, the compressed domain video
process possesses two important features, which are very attractive for object analysis. First,
the texture characteristics are provided by the DCT coefficiens with the need of only partial
decoding. Second, the motion information is readily available without incurring cost of com-
plicated motion estimation process for not intra only MPEG encoded videos. In the proposed
method, we first exploit the macro-block structure of the MPEG encoded video to decrease
the spatial resolution of the processed data, which exponentially reduces the computational
load. Further reduction of complexity is achieved by temporal grouping of the intra-coded
and estimated frames into a single feature layer. The video segmentation is achieved by using
the combination of DCt coefficients for I-frames and block motion veactors for P-frames. A
frequency-temporal data structure is constructed. Starting from the blocks where the AC-
coefficient energy and local inter-bloack DC-coefficient variance is small, the homogeneous
volumes are enlarged by evaluating the distance of candidate vectors to the volume charac-
teristics. Affine motion models are fit to volumes. Finally, a hierarchical clustering stage
iteratively merges the most similar parts to generate an object partition tree as an output.
The experimental results have shown that the proposed compressed domain video segmenta-
tion method provides the similar results as by using spatial domain process with much less
computational complexity.
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Abstract

We propose a compressed domain video object segmentatitrodnor MPEG or MPEG-like encoded videos.
Computational superiority is the main advantage of the gesged domain processing. In addition to computational
advantage, the compressed domain video process possess@mportant features, which are very attractive for
object analysis. First, the texture characteristics aowiged by the DCT coefficients with the need of only partial
decoding. Second, the motion information is readily a\délavithout incurring cost of complicated motion estimatio
process for not intra only MPEG encoded videos. In the pregarethod, we first exploit the macro-block structure
of the MPEG encoded video to decrease the spatial resolafitine processed data, which exponentially reduces the
computational load. Further reduction of complexity isiaehd by temporal grouping of the intra-coded and estimated
frames into a single feature layer. The video segmentatiachieved by using the combination of DCT coefficients
for I-frames and block motion vectors for P-frames. A freguetemporal data structure is constructed. Starting from
the blocks where the AC-coefficient energy and local intecl DC-coefficient variance is small, the homogeneous
volumes are enlarged by evaluating the distance of careidattors to the volume characteristics. Affine motion
models are fit to volumes. Finally, a hierarchical clustgritage iteratively merges the most similar parts to geeerat
an object partition tree as an output. The experimentalteebave shown that the proposed compressed domain video
segmentation method provides the similar results as byguspatial domain process with much less computational

complexity.
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I. INTRODUCTION

Video object segmentation is one of the challenging tasksdao processing since it requires fusion of different
modalities such as color, texture, motion, etc., and bnidghe semantic gap between the numerical information
embedded in the video and the human perception. Neverthdtebas several important applications from the
general video compression standards (MPEG-4) to specifiotedetection tasks. The segmentation information
also enables indexing and content retrieval in video daeda

Conventionally, object segmentation is performed in thaetigpcolor domain, so called aaw data, using a pair
of consecutive images at a time [1]-[5]. Since no motioniinfation is available in the raw data, a pixel-wise motion
field is often estimated by the optical flow or block-matchbragsed approaches with an additional computational

cost, which can be very high depending on the desired acgWée should also note that most commercial video
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systems makes heavy use of the compressed data especialty thin data needs to be transmitted and stored.
This becomes a constraint especially for the large scalemgs In such systems, the raw domain segmentation
approaches cannot be performed until the compressed vatebden decompressed first. Since the video is already
encoded, it is computationally more convenient to proceda th the compressed domain rather than decomposing
it. Furthermore, the block structure of the compressed doniata drastically condenses the amount of data to be
processed, and speeds up the processing time. In additibe teduction of the computational complexity, there are
several other advantages of imposing object segmentatitireicompressed domain. For instance, the compressed
video contains information about the spatial energy diation within the image blocks as a result of the frequency
decomposition. Therefore, several image attributes sedexure and gradient may be estimated easily without a
tedious analysis. Most importantly, a block-wise traristzl motion information is embedded within the encoded
sequence for the motion compensated frames, which can loedirgetly or as a prior information to guide more
sophisticated motion estimation stages. The compressetriidoanalysis serve as an initial stage that steers the
following uncompressed domain segmentation by providimgdmental information such as motion parameters
and color properties to decrease the computational loatleofurther processing.

It has to be noted that, compressed domain analysis haatioms as well. The Discrete Cosine Transform (DCT)
removes the spatial correlation among the pixels withinaclkl thus the precision of the segmentation degrades
by the block dimension. Since the goal of motion compensdtido provide a good prediction but not to find the
correct optical flow, the the motion vectors (MV) are oftemtzominated with mismatching and quantization errors.
On top of that, the motion fields in MPEG streams are quite @tonquantization errors.

In contrast to the immense amount of work performed over omressed video (a review is given in [9]),
only a few researchers have proposed the object segment@tjorithms in the compressed domain [6]-[13].
Some algorithms are even restricted in the DCT coefficiefts. instance, Wang [13] proposed an algorithm
to automatically detect faces where he uses skin-tonestitati shape constraints, and energy distribution of the
luminance DCT coefficients to locate the face position. &irtyi, De Queiroz [8] proposed and algorithm to segment
JPEG images into specific regions such as those containlfigres, text, and continuous-tone using the encoding-
cost-map based on DCT coefficients. In a related work, Suggraad Rao [12] proposed a region segmentation
and clustering based algorithm to detect objects in MPEGpressed video. Their segmentation algorithm consists
of four main stages; initial segmentation using sequete@iler and adaptive k-means clustering, region merging
based on spatiotemporal similarities, foreground-bamkigd classification, and object detail extraction. Howgver
this algorithm does not have a mechanism to handle the metators of multiple P-frames. It requires several
preset thresholds and the value of the sequential clugtéiieshold is crucial to determine the number of objects.
Besides, k-means clustering method needs appropriatentseigr the block coordinates, DCT coefficients, and
motion information. A confidence measure based moving olggtaction system was proposed by Zhang [14].
They proposed several confidence measures to improve mialyen separation. Their algorithm detects objects
after a global motion compensation. Ji and Park [10] segetkdinamic regions based on the DCT coefficient

similarity and true/false motion block classification. Hower, this method requires tracking of individual regions.
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Fig. 1. Detailed flow diagram of the compressed domain setatien algorithm. An hierarchical object tree with an asatdl quality
assessment score is generated after the segmentationinfdrimation may be used to guide the possible proceedinkstaacluding the
transcoding of video into MPEG-4.

Babu and Ramakrishnan [6], on the other hand, used only ggtp@ motion vectors.

Based on the above observation about the previous algaritifncompressed domain video segmentation, we
develop a fast, automatic, compressed domain segmengdgorithm that fuses motion and frequency information.
A flow diagram is shown in Fig.1. After parsing an MPEG videtoitthe DCT coefficients and motion vectors,
we construct a 3D frequency-temporal data structure usinflipte Group of Pictures (GOP)’s that contains |
and P frames between two scene-cuts. Each GOP is repredgntedayer of vectors that correspond to blocks
in an I-frame. Each vector consists of a number of selected bafficients and a set of accumulated forward-
pointing MV’s within the GOP. Then, we grow volumes withinetl8BD data structure by starting from selected
seed points. The volume growing gives the connected partddeb that have consistent DCT coefficients and
motion parameters. The seed points are assigned as thesbilwatkhave minimum texture and gradient in their
local neighborhood to improve the likelihood of generatowherent volumes. For each volume, we determine a
set of volume descriptors, including trajectorial motiaffine motion, color, representative DCT coefficients. As a
final stage, we iteratively merge the similar volumes ushejrtdescriptors to obtain a hierarchical object-pantitio
tree. We compute a validity score to assess the quality ofdineent segmentation results at each level of the object
tree. The validity score indicates the optimal segmentafs shown in the presented results, our method is robust
towards the similarity threshold perturbations. It is nmabfock accurate and computationally simple at the same
time.

In the next section, we explain the MPEG parser. In sectiome3ntroduce the frequency-temporal data structure.
In section 4, we give details of the volume growing. In satoand 6, we present the motion parameter estimation

and the hierarchical volume clustering algorithms.
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Il. MPEG PARSER

To obtain the DCT coefficients and motion vectors withoulyfulecoding the input video, the parser retrace the
encoding stages. We give brief explanation of the mecham@sMPEG below.

The basic idea behind the MPEG video compression is to rergpatal redundancy within a video frame and
temporal redundancy between video frames. DCT-based @ssipn is used to reduce spatial redundancy. Motion-
compensation is used to remove the temporal redundancyMPteG compression scheme converts a bitstream in
terms of | (intra-compressed), P (forward predicted), an@iBlirectional predicted) frames. An I-frame is encoded
as a single image, with no reference to any past or futuredsant stores the DCT information of the original
frame. The P and B frames store the motion information anidues after motion compensation. Although I-frame
provides no motion information, still color and textureanhation can be propagated to the P-frames by inverse
motion compensation. A P-frame is encoded relative to tist redierence frame. A reference frame is either a P or
I-frame. All I-frames are divided into 16x16 pixel macrobks. Each macroblock consists of fatix 8 luminance
(Y) blocks and two 8x8 chrominance (U,V) blocks.

The block is first transformed from the spatial domain intoeqfiency domain using the DCT, which separates
the signal into independent frequency bands. The DCT cdegifie are correlated with spatial frequencies, thus,
given that the different components have different impuréa it can be used to remove the redundancy. The DCT
is often used in signal and image processing due to its steoeggy compaction property. The signal information
tends to be concentrated in a few low-frequency compondrttseeoDCT, approaching the optimal Karhunen-Love
transform for signals based on certain limits of Markov m®ges. In DCT, coefficient corresponding to the zero
frequency decomposition is called as e and the remaining coefficients ag parameters. Thdc parameter
indicate the average color within the macroblock for theegicolor channel. After the DCT transform, the data
is quantized for further reduction. The quantization pescean be regarded as dismissing the lower-order bits.
The resulting data is then run-length encoded in a zigzagrovgl to increase coding efficiency. The goal of
motion compensation is to provide an approximate prediclis the macroblock. Motion-compensated prediction
assumes that the current picture can be locally modeled asnaldtion of the pictures of some previous time.
Each macroblock in a P-frame can be encoded either as anrbbiack or as a P-macroblock. An I-macroblock
is encoded just like a macroblock in an I-frame. A P-macrobklis encoded as a 16x16 area of the past reference
frame, plus an error term. In the macroblocks where preatidt applied, the DCT is performed to the prediction
errors instead of to the image samples and more the predietimrs are low and more the entropy coding is
effective. The MPEG specifies how to represent the motioormétion for each macroblock of P-frames. It does
not, however, specify how such vectors are to be computed.tbuhe block-based motion representation, many
implementations use block-matching techniques, wherentigon vector is obtained by minimizing a cost function
measuring the mismatch between the reference and the tiomk. Thus, the MPEG motion vectors does not
necessarily correspond to the true motion but the best nmataf macroblocks. The sequence of different frame

types is called the Group of Pictures (GOP) structure. Theeemany possible I, P, B frame arrangements, often
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Fig. 2. A decoded I-frame and its corresponding layers inftequency-temporal data FT.

ranging from 12 to 15 frames. The ratio of different type @frfires in the GOP is determined by the nature of the
video stream and the bandwidth requirement of the outpeasir

To parse an MPEG video, we first chop the binary bitstream liytes. At this point, all the DCT coefficients
are in the quantized format. Thus, we apply an inverse qeetitin to find the integer valued DCT coefficients.
We obtain the motion vectors after variable length decodiig reconstruct the scan lines of macroblocks by
indexing the DCT coefficients and motion vectors. The pargirocess is computationally much simpler than the
full decoding of MPEG video, which requires application af’érse DCT and motion compensation stages. On
average, the parsing tak8s~ 10% of the decoding time [7]-[11] for a GOP.

After we parse the data, we assemble the DCT coefficients astbmvectors of I-frame and P-frames of a

GOP into a frequency-temporal data, which will be used ingbgmentation.

Ill. FREQUENCY¥TEMPORAL DATA STRUCTURE

The frequency-temporal (FT) data structure contains th& Paefficients and motion vectors of the corresponding
GOP or a set of multiple consecutive GOP’s within a video sthiich is a part of the video between two scene-
cuts. Therefore, the content of the video shot, i.e. the rarmb objects and their properties, are consistent for the
set of GOP’s. The FT data has three dimensions; spatialdrdefzand vertical, and time. Each element of the FT
corresponds to a feature vectgit, m,n), that represents the attributes of &hx M macroblock, where is the
index of the GOP’s, andn,n are the indices of macroblocks. The vectors belong to thees@@P constitute a
temporal layer.

The feature vector components consists of dhgparameters of the I-frame (for all Y,U,V channels), a redluce

set of theac parameters (for Y-channel only), a spatial energy ternand the accompanying forward-predicted
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motion vectors obtained from the P-frames. Tweand ac components only exist for the I-frame in the GOP. The
dc parameters represent the average color of the block, tleysddn be considered as a subsampled I-frame by a
factor of 8 as shown in Fig. 2. However, not all the color ctelarare encoded in the same precision. It is often
preferred in the compression of the color data for MPEG thatdhrominance channels have half the resolution of
the luminance channel, basically due to the fact that hunisul/perception is more sensitive to the luminance
variance than the chrominance.

The DCT transform of an/ x M image block is defined as

M M
9 (22 4+ 1 2y+1
dct(u,v) = i Z Z I(z,y) cos 7”/(2;"\;‘ ) cos 771)(21]}\;' ) (1)

z=1y=1

whereu andv are the horizontal and vertical frequenciasv = 1, .., M), andI(z,y) is a pixel. In regular MPEG
syntax, the block size is often/ = 8. For a block in which the spatial texture is smooth, most & kigher
indexed DCT coefficients have lower values and they reduceeto after the quantization stage. Another key
observation is that the higher coefficients of the DCT is gieasto the pattern shifts unlike the magnitude of the
Discrete Fourier Transform, e.g. the spatially shiftedsiars of the same pattern will have different higher order
coefficients. Since object movement will cause the shiftecsions of the same pattern between the I-frames, the
higher order coefficients, in fact, will be different. Mokew, the ordinary image noise, such as salt-and-pepper,
causes changes in the higher order terms. Thus, it only maksesto include a set of certain number of lower
indexed DCT coefficients into the feature vector. In our datians, we chose 3 main such sets of horizontal,

vertical, and diagonatc parameters;

K
1 .
acp = ﬁ ZZ:; dCt(Z, O) (2)
1 K
ac, = m Z dCt(O, Z)
=2
_ 1Ny i)
acqg = H CU\1,17

=2
where K < M. We also define an energy termto represent the amount of the spatial variance within the

macroblock

| MM
€= 13 Z Z det(u,v) 3)

u=1v=1

There is a strong correlation between the energy term anddtgracy of the motion estimation. A block-matching
based motion estimation of a macroblock that contains smteotture thus having a lower energy term, may not
be as accurate as estimation for a high energy block sinak Imh@tching may fail for smooth image regions. The
original MPEG motion vectors are prone to errors due to tleelimatching and quantization. Therefore, we apply
a spatial filter to prune the extremities of motion vectordiélve first estimate motion vectors of the intra-coded
macroblocks of the P-frames, for which no motion vectorsassigned in the compressed data. We compute the

mean of the motion vectors within a local window and set itlses rnotion vector of the intra-coded macroblock.
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Fig. 3. (a) One P-frame motion vector contributes at most fdfeame macroblocks. (b) Forward motion projection expotially branches
out for more than one P-frames.

We then convolve the refined motion vectors with a Gaussiampl@e to minimize the singularities. There is a
trade of between filtering and boundary accuracy; althoughpplication of Gaussian filter may smear the object
boundaries, not removing the singularities causes morgfisignt segmentation errors. We observed that>a3
window gives the best results for the various sequencesatbdested. The feature vector at each point of the FT
then defined as

ft,m,n) : [dey dey dey acy ac, acq € mu, mvy]zm7n. (4)

Note that, 15 frames 0352 x 288 spatial resolution color video need52 x 288 x 15 x 3 pixels in the raw data
domain, however, the corresponding frequency-tempotal das onlyd4 x 36 x 9 components, which is equal to
a reduction of 320:1 in the data size.

One problem of integrating the motion information into tle@ture vector is that the motion vectors of P-frames
are back-predicted. In other words, for an | and P frame paly the blocks in the first P-frame have their motion
vectors pointing the most similar placements in the I-frafneother words, motion vector for an I-frame block
does not exists. We convert the motion vectors of the P-frionéhe I-frame blocks as illustrated in Fig. 3-a. We
find a motion vector for an I-frame block that points the matghregion in the following P-frame. After forward
projecting each P-frame block to the I-frame, we computeotrexlapping areas between the original and projected
blocks. We update the I-frame motion vectors of the overappframe blocks with respect to the ratio of the
overlapping area to the covered area of this block afterhalviectors of P-frame are projected. It is obvious that
for an I-frame block that is entirely covered by the projecReframe blocks, the motion vector prediction is more
accurate than another frame that is partially covered.

The above forward projection is only applied to the immealiatljoint P-frame due to th fact that the accuracy
of the motion prediction exponentially degrades as ilatsd in the Fig. 3-b. Besides, the accuracy of the forward

projected motion vector is limited to the accuracy of thgioral vectors, which may be inaccurate at the beginning.
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One way to obtain the forward motion vectors is to partialcade both | and P frames and compute optical flow
or motion field between them, which is computationally phbithre. The generation of the FT data takies- 2msec.

on average for a GOP.

IV. VOLUME GROWING

We grow 3D volumes within the frequency-temporal data stgrfrom the seed points. These volumes may
extend between multiple GOP’s. A temporal slice of a volurieg the corresponding region in a GOP. Volume
growing associates the feature-wise similar FT points,rotelocks, into a coherent segment. Since we start grouping
of similar points from a seed point, it is required that thé&iah seed point is a proper representative of its
3D local neighborhood. The points that have lower variarninetheir feature values are candidates. The energy
term gives valuable information about the 2D variance. Tiome the continuity on the temporal dimension, we
choose points that have minimum energy in both frequencytangboral dimensions instead of only frequency

(argmin f(m,n, t){e}) as

F(t;m,n)seea = avg min ;lg;ftﬂfmﬂ n+ j){e} (5)

After we select a seed point, we initialize a volume using fisgture vector of the seed point, that is, the
components of the seed point becomes the components of thevalame. We define an active boundary of
points that keeps account of the newly added points to thenwel At the beginning the active boundary has
only the seed point inside. Then, we check the immediatehbeigng points of the active boundary points. We
evaluate 6-neighboring points in all 3 directions. Evahgthe points in temporal dimension enables imposing the
assumption that the regions belongs to an object overlapdeet the consecutive GOP’s. However, in case of a
GOP contains a large number of P-frames, the time distantweeba the I-frames of two consecutive GOP’s will
increase accordingly, and as a result the overlapping ggfmmmay be weaken. Favorably, most MPEG GOP’s
usually consist of 2-15 P-frames. We compare the featurtoxe¢ of the neighboring points with the volume

feature vectow. A distance metric is given as
8(v, f) = wacbact(v, f) + Wacac(v, f) + Wmpbma (v, f) (6)

wherewy,, wqe. andw,. regulate the contribution of the DCT coefficients and motieetor distances, which are

obtained as
bac(v.f) = [o{dey} — fldey}| + loldey} — fdey}| + ofdey ) — fdey )], @
bac(v,f) = [ofacs} — flaca}| + [vfac,} — flac,}| + [ofaca} — f{aca}], ®
b0, f) = \J(0{mvg} — Flmo,})? + (o{mog} — fmo,})2. ©

The above weights can be adapted to the given content. Weveldsthat the higher values of the DCT distance
provides more accurate segmentation in case of the motidamsignificant (e.g. forAkiyo and other head-and-
shoulder sequences). In case there exists fast movingtshjéth multiple featured regions, the motion distance

carries more discriminating information of objects.
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Fig. 4. Affine motion parameters are fitted using translatianotion information.

We apply a threshold to the above color distance. The threshold determines theigion of the segmentation
process, thus the average size of the volumes. Automatjutatitan of the distance threshold require evaluation of
the segmentation results. We overcome this problem by dusia similar volumes in the hierarchical clustering
stage. Therefore, any threshold value that prevents frodemrsegmentation would suffice for our purpose.

In case the distance is less than the threslgld f) < e, the vectorf is included in the volume The volume
feature vector is updated by the averaged means of the porrdsig components. The new point is assigned as
an active boundary. After a volume is grown, all the vectdrgshe volume is removed from the FT. The seed
selection and volume growing process is iterated until noenpmint remains in the FT. As a post-processing stage,
the volumes that have negligible size (e.g. 1-4 blocks) amoved and the remaining volumes are inflated to fill
up the empty space.

The seed selection is a relatively intensive task sinceviblies a search for the minimum. One way to speed
it up is to separate minimum search in the layers, i.e. thallognimum in the current 2D layer is searched and
a volume in 3D data is grown, with a twist that the next seede@ched not in the previous 2D layer but in the

following layer. The seed selection and volume growing tale~ 1.5msec for a GOP on average.

V. MOTION PARAMETERS

After volume growing, we have the parts of the FT that are stest in terms of their DCT coefficients and
translational motion distributions. The next task is to fimation model to each volume. We accomplish this
by estimating the affine motion parameters of the regions whlame in the corresponding temporal layers then
averaging the set of individual parameters over all of theds. Thus, we solve the notorious region of support

problem of motion segmentation by using the segmented megib the temporal layers. We model the layer-wise
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Fig. 5. (a) A frame fromBream (b) original MPEG motion vectors interpolated fix 8 blocks, (c) motion vectors after parameter estimation.

motion by a set of affine motion parametetsB

8[m1+[m”w]:Am+B:[al aQ][m]+[bl] (10)
| e | Los a ][] (0]

where[m,n]T is the block indices. The constant multiplier 8 converts lheck indices to spatial coordinates in
which the original motion vectors are measured.

We estimate translational motidn= [b;,b,]7 for each volume at every temporal layer. We have two traioslat
motion information sources; one is the average of the matiators within the region and the second is the trajectory
displacement. Trajectory of a volume is defined as the setyafriwise representative coordinates that can be chosen
as the center-of-mass of the corresponding regions. Taajeis calculated by averaging the coordinates of the goint
belong to the volume in a layer. After finding the trajectoporinates, we take difference to determine trajectory
displacement. We assign the translational moties the mean of the average motion and the trajectory displeae
vectors. For a region that consists fblocks in a temporal layer, we accumulate the motion vediotg , mv}]"
and its originating coordinatdsn;, n;]* as

[ml mK-I [mv}c
8Ln1 nKJ+[mv; mv;(J

Yoxk) = Apex2)X(@xk) (11)

where only unknown is the matrid since we already estimatdgl, and the left hand side of the above equafion

is known.X is an2 x K matrix, therefored = Y/ X is the solution in the least squares sense to the overdetedmi
system of equation¥” = AX. The effective rankR is determined from the QR decomposition with pivoting. A
solution A is computed which has at mo#&t nonzero components per column. We compute the affine motion
parametersd, B for every frame of the volume. Motion parameter estimatioaldes to refine motion field as

illustrated in Fig. 5. This process tak&s- 10ms for a GOP.
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Fig. 6. At each iteration of hierarchical clustering, two sheimilar volumes are merged.

VI. HIERARCHICAL CLUSTERING

The segmentation algorithm generates volumes, theibatés, and information about how these volumes can be
merged. Since human is the ultimate decision maker in amgythe results of video segmentation, it is necessary
to provide the segmentation results in an appropriate fotoaser or for further analysis and application specific
merging. The object tree generated as a result of the hiecalcclustering satisfies this requirement.

We cluster the segmented volumes into objects using theicrgigors such as motion parameters and DCT
coefficients. Clustering can be done either by hierarchacgdartitional approaches. Hierarchical methods produce
a nested series of partitions while a partitional clustgaigorithm obtains a single partition of the data. We adapt
a hierarchical clustering technique by merging the voluimes fine-to-coarse manner.

Clustering starts with the volumes generated after themelgrowing, thus the initial number of volumes varies
from sequence of sequence. At each iteration of the hiechblustering, we merge the pair having the most
similar parameters as shown in Fig. 6. We define a similarityria between volumes as

1
s(vi,v5) = 17gZ(cRmi,rAm+cT\B,;,thj,t|) (12)

t
wheret is the temporal layers both volumes are visille,is a normalization constant, i.e. maximum distance. The

mixture constants are set ag > cp to take into account of the fact that a small change in thetiostéscaling
parameters can lead to much larger difference in the moaeteithn field than the translation parameters. We update
the descriptors, i.e. the motion parameters of the volumesprdingly after each merge. Hierarchical clustering is
iterated until there are only two volumes remain.

At each level of the clustering algorithm, we evaluate whethe chosen volume pair is a valid merge. We keep

track of the change in the similarity term. The sudden draps small values of the similarity score indicate an
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Fig. 7. Motion, trajectory, and DCT coefficient based simifijascores obtained of the merged pairs in the hierarchitadtering.

invalid merge. We should note that the consistency of thisesdepends the definition of the similarity. We observed
that the motion parameter based similarity scores are tobesit gives a smoother and monotonicaly decreasing
scores while providing accurate clustering results as shiowFig. 7. The trajectory based motion similarity score
is found to be not as consistent as the motion parameterarsetore since it disregards the rotation and sensitive
to the shape of the object, e.g. larger objects tend to hagdescriptive trajectories due to the averaging of the
positions of its member blocks. On the other hand, dheoefficient based similarity causes wrong merges since
it disregards the motion information.

Alternatively, we define a cluster validity scorg, to provide an answer to the basic question of clustering;

"what should be the optimum number of objects?” as

L
ap = ZS(W) Z [0%(fi,j{mvx}) + o> (fi;{moy })] (13)

fi,j€vs
where f;{mvx}, f;{muvy } are the horizontal and vertical motion vector componentsife points belong to the
volumew;. S(v;) is the total number of points in the volumg. We uses?(.) as the variance operatat. is the
current number of volumes at the hierarchical clusteringlleln other words, the validity score corresponds to
the total variance of the motion parameters within the alinsents. The validity score gets lower values for the
better fitted segments. Thus, by evaluating the minima af $hbre, we can determine the correct cluster number
automatically. As shown in Fig. 8, the total segment vargasieddenly increases in case of an invalid merge. For the
traffic sequence, there are main 3 objects; vehicle on the leftcheebin the right, and the stationary background. As
visible, the validity score jumps when we merge 3 objectsebjobjects, which means that the merge is incorrect
and there should be only 3 objects, which is also present&iinl3. Similarly, for thetable tennissequence, the
validity score estimates the optimum number of clusters;dbeball and the background, since only the ball was
moving for that segment of GOP’s. In addition, the objece tiecludes the table and the arm as well as shown in

Fig. 14.
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Fig. 8. \Validity scorea;, for two sequenceslraffic and Table TennisArrows indicate invalid merges.

VIl. EXPERIMENTS

To test the proposed algorithm, we used different number ©P8 (2-12), which have various number of P-
frames ranging up to 15. In case of using 12 GOP’s with 1 I-athP-frames, and 3 B-frames each, which is a
common configuration, this corresponds to a synchronousaetation of 96 frames of the original video. When
we construct the frequency-temporal data structure, wel@rag only the first P-frame after the I-frame to obtain
the forward-predicted motion vectors. We observed thébailgh the inclusion of the following P-frames increases
the computational load, it does not improve the segmemtatio

We set the volume growing thresholds once and used the sagshitids for all test sequences. As we explained
before, any threshold value that prevents from under-satatien would suffice for our purpose since the clustering
stage is designed to merge over-segmented volumes. Tlaacksthreshold assigned to a higher value for inter-layer
vector difference than the intra-layer vector differencexploit the inter-layer growing for the sequences thathav
fast motion.

We removed the volumes that are smaller than 4 points, whickespond to a 16816 raw image region, to
prevent from having an excessive number of volumes. ifilteal images in Figures 9-14 show the segmentation
results for an I-frame of the first GOP layer for each test saqa after the volume growing stage. As visible,
the objects that have similar DCT coefficients and motiortarscare accurately detected even at the coarse block
resolution, which shows the effectiveness of the comptedsenain segmentation.

Figure 9 shows an I-frame, the initial segmentation and thieab tree for theakiyo sequence, where both of
the validity and motion parameter similarity based methcticate the optimum number of clusters is 2 (the head
and the background since head had the most discriminatirngment for that group of GOPs). Figure 10 presents
the segmentation results for thab sequence. The validity score suddenly changes at the Ghesievel 2, which

shows there should be two clusters, i.e. person and backdrdtigure 11 gives results for tHeeamsequence.
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TABLE |

COMPUTATIONAL LOAD OF A GOP FOR A352x288VIDEO - 44x 36 BLOCKS)

Parsing 0.2~ 0.7 msec

FT Generation 0.5~ 1 msec

Seed Selection & Volume Growing 2 ~ 3 msec

Motion Parameter Estimation 8 ~ 10 msec

Hierarchical Clustering 2 ~ 4 msec

We observed that the validity score gives the optimum at thstering level 3 due to the fact that the upper fin of
the fish has different movement. Ideally, the optimum nundberuld be 2, however, not all regions of the fish has
the same motion.

We show an I-frame from thehildren sequence and its object-tree in Figure 12. The computedityacores
changes suddenly after the clustering level 3, which irndiéhe optimum segments are the moving head of the
boy on the left, the body of the boy on the right, and the bamlgd. The segmentation results for a GOP of
the traffic is given in Figure 13. As shown in Figure 8, the validity scdéoe this video jumped when we tried
to merge 3 remaining objects. We observed that the validioresfor the sequence increased at level 2. These
results confirm with the motion existing in the scene, andrgsceffectiveness of the proposed algorithm even if
the objects are small in comparison to the frame size.

As visible in these results, the motion parameter basedasityimeasure can detect the small motion variances.
Although a fast moving single small object may invalidate tiverlapping regions assumption and appear as separate
objects in different layers, we observed that, for the matkemotion sequences, the trajectories are continuous
and segmented region boundaries are accurate. We alsaideddhat the segmentation process is not sensitive to
the minor threshold perturbations which gives additioretiBility. The proposed algorithm is faster than real time
video playing speed. The total segmentation time includimgMPEG parsing varies in the range Iéf ~ 20ms
for a GOP on a P4 3Ghz platform depending on the number o&lrdthjects after the volume growing as shown
in Table I. Most computations are involved in motion paragnéitting stage. Favorably, the speed is not influenced
by the complexity of the motion. Since the GOP’s correspdntiethe 8 frames of the original raw data in this

computational analysis, the proposed algorithm achieveaveragd).9 ~ 2ms processing speeds per frame.

VIIl. SUMMARY

We present a real-time object segmentation method for MPig®ded video. Our method fuses the motion and
frequency information. After parsing an MPEG video into €T coefficients and motion vectors, we construct
a 3D frequency-temporal data structure and grow volumestastireg from selected seed points. The volume
growing gives the connected parts of video that have cagif2CT coefficients and motion parameters. For each
volume, we determine a set of volume descriptors, includtiagctorial motion, affine motion, color, representative

DCT coefficients. At the final stage, we iteratively merge fimilar volumes using their descriptors to obtain a
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Fig. 9. An I-frame fromAkiyg and the segmentation results at the corresponding dhustiavels including the background. Both validity
and similarity based metrics indicate the optimum numbectladters is 2.

hierarchical object-partition tree. We compute a validiore to assess the quality of the current segmentation
results at each level of the object tree. As shown in the ptederesults, our method gives accurate segmentation
maps.

As future work, we plan to use the compressed domain praugss a precursor to improve the uncompressed

domain segmentation.
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Fig. 10. An I-frame fromLab, and the segmentation results at the corresponding dhugtivels. Validity metric jumped at level 2, which
indicates there should be two clusters, i.e. person andgbaghkd. Different volumes are randomly colored.
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Fig. 11. An I-frame fromBream and the segmentation results at the corresponding dhgtievels. Validity score claims that the segmentation
is optimum at the level 3 due to the fact that the upper fin offitie has different movement.
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Fig. 12. An I-frame fromChildren, and the segmentation results at the corresponding dhgtiavels. Validity score indicates the optimum
number of clusters should be 3; moving head of the boy on fiiebledy of the boy on the right, and background. However, system enables

the end user to choose any level in the object tree.
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Fig. 13. An I-frame fromTraffic, and the segmentation results at the corresponding dhgtivels. The validity score indicates the optimum
segment number should be 3 including the background.
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Fig. 14. An I-frame fromTable Tennisand the segmentation results at the corresponding dhugtievels. The validity score for this sequence

jumped at level 2.
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