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Abstract
We propose a compressed domain video object segmentation method for MPEG or MPEG-
like encoded videos. Computational superiority is the main advantage of the compressed
domain processing. In addition to computational advantage, the compressed domain video
process possesses two important features, which are very attractive for object analysis. First,
the texture characteristics are provided by the DCT coefficiens with the need of only partial
decoding. Second, the motion information is readily available without incurring cost of com-
plicated motion estimation process for not intra only MPEG encoded videos. In the proposed
method, we first exploit the macro-block structure of the MPEG encoded video to decrease
the spatial resolution of the processed data, which exponentially reduces the computational
load. Further reduction of complexity is achieved by temporal grouping of the intra-coded
and estimated frames into a single feature layer. The video segmentation is achieved by using
the combination of DCt coefficients for I-frames and block motion veactors for P-frames. A
frequency-temporal data structure is constructed. Starting from the blocks where the AC-
coefficient energy and local inter-bloack DC-coefficient variance is small, the homogeneous
volumes are enlarged by evaluating the distance of candidate vectors to the volume charac-
teristics. Affine motion models are fit to volumes. Finally, a hierarchical clustering stage
iteratively merges the most similar parts to generate an object partition tree as an output.
The experimental results have shown that the proposed compressed domain video segmenta-
tion method provides the similar results as by using spatial domain process with much less
computational complexity.

IEEE Transactions on Circuits and Systems for Video Technology

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2005
201 Broadway, Cambridge, Massachusetts 02139





1

Compressed Domain Video Object

Segmentation
Fatih Porikli, Senior Member, IEEE,and Huifang Sun,Fellow, IEEE,

Abstract

We propose a compressed domain video object segmentation method for MPEG or MPEG-like encoded videos.

Computational superiority is the main advantage of the compressed domain processing. In addition to computational

advantage, the compressed domain video process possesses two important features, which are very attractive for

object analysis. First, the texture characteristics are provided by the DCT coefficients with the need of only partial

decoding. Second, the motion information is readily available without incurring cost of complicated motion estimation

process for not intra only MPEG encoded videos. In the proposed method, we first exploit the macro-block structure

of the MPEG encoded video to decrease the spatial resolutionof the processed data, which exponentially reduces the

computational load. Further reduction of complexity is achieved by temporal grouping of the intra-coded and estimated

frames into a single feature layer. The video segmentation is achieved by using the combination of DCT coefficients

for I-frames and block motion vectors for P-frames. A frequency-temporal data structure is constructed. Starting from

the blocks where the AC-coefficient energy and local inter-block DC-coefficient variance is small, the homogeneous

volumes are enlarged by evaluating the distance of candidate vectors to the volume characteristics. Affine motion

models are fit to volumes. Finally, a hierarchical clustering stage iteratively merges the most similar parts to generate

an object partition tree as an output. The experimental results have shown that the proposed compressed domain video

segmentation method provides the similar results as by using spatial domain process with much less computational

complexity.

Index Terms

MPEG Video, Segmentation, Volume Growing

I. I NTRODUCTION

Video object segmentation is one of the challenging tasks invideo processing since it requires fusion of different

modalities such as color, texture, motion, etc., and bridging the semantic gap between the numerical information

embedded in the video and the human perception. Nevertheless, it has several important applications from the

general video compression standards (MPEG-4) to specific event detection tasks. The segmentation information

also enables indexing and content retrieval in video databases.

Conventionally, object segmentation is performed in the spatial-color domain, so called asraw data, using a pair

of consecutive images at a time [1]-[5]. Since no motion information is available in the raw data, a pixel-wise motion

field is often estimated by the optical flow or block-matchingbased approaches with an additional computational

cost, which can be very high depending on the desired accuracy. We should also note that most commercial video
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systems makes heavy use of the compressed data especially when the data needs to be transmitted and stored.

This becomes a constraint especially for the large scale systems. In such systems, the raw domain segmentation

approaches cannot be performed until the compressed video has been decompressed first. Since the video is already

encoded, it is computationally more convenient to process data in the compressed domain rather than decomposing

it. Furthermore, the block structure of the compressed domain data drastically condenses the amount of data to be

processed, and speeds up the processing time. In addition tothe reduction of the computational complexity, there are

several other advantages of imposing object segmentation in the compressed domain. For instance, the compressed

video contains information about the spatial energy distribution within the image blocks as a result of the frequency

decomposition. Therefore, several image attributes such as texture and gradient may be estimated easily without a

tedious analysis. Most importantly, a block-wise translational motion information is embedded within the encoded

sequence for the motion compensated frames, which can be used directly or as a prior information to guide more

sophisticated motion estimation stages. The compressed domain analysis serve as an initial stage that steers the

following uncompressed domain segmentation by providing fundamental information such as motion parameters

and color properties to decrease the computational load of the further processing.

It has to be noted that, compressed domain analysis has limitations as well. The Discrete Cosine Transform (DCT)

removes the spatial correlation among the pixels within a block, thus the precision of the segmentation degrades

by the block dimension. Since the goal of motion compensation is to provide a good prediction but not to find the

correct optical flow, the the motion vectors (MV) are often contaminated with mismatching and quantization errors.

On top of that, the motion fields in MPEG streams are quite prone to quantization errors.

In contrast to the immense amount of work performed over uncompressed video (a review is given in [9]),

only a few researchers have proposed the object segmentation algorithms in the compressed domain [6]-[13].

Some algorithms are even restricted in the DCT coefficients.For instance, Wang [13] proposed an algorithm

to automatically detect faces where he uses skin-tone statistics, shape constraints, and energy distribution of the

luminance DCT coefficients to locate the face position. Similarly, De Queiroz [8] proposed and algorithm to segment

JPEG images into specific regions such as those containing halftones, text, and continuous-tone using the encoding-

cost-map based on DCT coefficients. In a related work, Sukmarg and Rao [12] proposed a region segmentation

and clustering based algorithm to detect objects in MPEG compressed video. Their segmentation algorithm consists

of four main stages; initial segmentation using sequentialleader and adaptive k-means clustering, region merging

based on spatiotemporal similarities, foreground-background classification, and object detail extraction. However,

this algorithm does not have a mechanism to handle the motionvectors of multiple P-frames. It requires several

preset thresholds and the value of the sequential clustering threshold is crucial to determine the number of objects.

Besides, k-means clustering method needs appropriate weights for the block coordinates, DCT coefficients, and

motion information. A confidence measure based moving object extraction system was proposed by Zhang [14].

They proposed several confidence measures to improve motionlayer separation. Their algorithm detects objects

after a global motion compensation. Ji and Park [10] segmented dynamic regions based on the DCT coefficient

similarity and true/false motion block classification. However, this method requires tracking of individual regions.
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Fig. 1. Detailed flow diagram of the compressed domain segmentation algorithm. An hierarchical object tree with an associated quality

assessment score is generated after the segmentation. Thisinformation may be used to guide the possible proceeding tasks, including the

transcoding of video into MPEG-4.

Babu and Ramakrishnan [6], on the other hand, used only aggregated motion vectors.

Based on the above observation about the previous algorithms of compressed domain video segmentation, we

develop a fast, automatic, compressed domain segmentationalgorithm that fuses motion and frequency information.

A flow diagram is shown in Fig.1. After parsing an MPEG video into the DCT coefficients and motion vectors,

we construct a 3D frequency-temporal data structure using multiple Group of Pictures (GOP)’s that contains I

and P frames between two scene-cuts. Each GOP is representedby a layer of vectors that correspond to blocks

in an I-frame. Each vector consists of a number of selected DCT coefficients and a set of accumulated forward-

pointing MV’s within the GOP. Then, we grow volumes within the 3D data structure by starting from selected

seed points. The volume growing gives the connected parts ofvideo that have consistent DCT coefficients and

motion parameters. The seed points are assigned as the blocks that have minimum texture and gradient in their

local neighborhood to improve the likelihood of generatingcoherent volumes. For each volume, we determine a

set of volume descriptors, including trajectorial motion,affine motion, color, representative DCT coefficients. As a

final stage, we iteratively merge the similar volumes using their descriptors to obtain a hierarchical object-partition

tree. We compute a validity score to assess the quality of thecurrent segmentation results at each level of the object

tree. The validity score indicates the optimal segmentation. As shown in the presented results, our method is robust

towards the similarity threshold perturbations. It is macro-block accurate and computationally simple at the same

time.

In the next section, we explain the MPEG parser. In section 3,we introduce the frequency-temporal data structure.

In section 4, we give details of the volume growing. In section 5 and 6, we present the motion parameter estimation

and the hierarchical volume clustering algorithms.
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II. MPEG PARSER

To obtain the DCT coefficients and motion vectors without fully decoding the input video, the parser retrace the

encoding stages. We give brief explanation of the mechanisms of MPEG below.

The basic idea behind the MPEG video compression is to removespatial redundancy within a video frame and

temporal redundancy between video frames. DCT-based compression is used to reduce spatial redundancy. Motion-

compensation is used to remove the temporal redundancy. TheMPEG compression scheme converts a bitstream in

terms of I (intra-compressed), P (forward predicted), and B(bi-directional predicted) frames. An I-frame is encoded

as a single image, with no reference to any past or future frames. It stores the DCT information of the original

frame. The P and B frames store the motion information and residues after motion compensation. Although I-frame

provides no motion information, still color and texture information can be propagated to the P-frames by inverse

motion compensation. A P-frame is encoded relative to the past reference frame. A reference frame is either a P or

I-frame. All I-frames are divided into 16x16 pixel macroblocks. Each macroblock consists of four8� 8 luminance

(Y) blocks and two 8x8 chrominance (U,V) blocks.

The block is first transformed from the spatial domain into a frequency domain using the DCT, which separates

the signal into independent frequency bands. The DCT coefficients are correlated with spatial frequencies, thus,

given that the different components have different importance, it can be used to remove the redundancy. The DCT

is often used in signal and image processing due to its strongenergy compaction property. The signal information

tends to be concentrated in a few low-frequency components of the DCT, approaching the optimal Karhunen-Love

transform for signals based on certain limits of Markov processes. In DCT, coefficient corresponding to the zero

frequency decomposition is called as thed and the remaining coefficients asa parameters. Thed parameter

indicate the average color within the macroblock for the given color channel. After the DCT transform, the data

is quantized for further reduction. The quantization process can be regarded as dismissing the lower-order bits.

The resulting data is then run-length encoded in a zigzag ordering to increase coding efficiency. The goal of

motion compensation is to provide an approximate prediction for the macroblock. Motion-compensated prediction

assumes that the current picture can be locally modeled as a translation of the pictures of some previous time.

Each macroblock in a P-frame can be encoded either as an I-macroblock or as a P-macroblock. An I-macroblock

is encoded just like a macroblock in an I-frame. A P-macroblock is encoded as a 16x16 area of the past reference

frame, plus an error term. In the macroblocks where prediction is applied, the DCT is performed to the prediction

errors instead of to the image samples and more the prediction errors are low and more the entropy coding is

effective. The MPEG specifies how to represent the motion information for each macroblock of P-frames. It does

not, however, specify how such vectors are to be computed. Due to the block-based motion representation, many

implementations use block-matching techniques, where themotion vector is obtained by minimizing a cost function

measuring the mismatch between the reference and the current block. Thus, the MPEG motion vectors does not

necessarily correspond to the true motion but the best matching of macroblocks. The sequence of different frame

types is called the Group of Pictures (GOP) structure. Thereare many possible I, P, B frame arrangements, often
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Fig. 2. A decoded I-frame and its corresponding layers in thefrequency-temporal data FT.

ranging from 12 to 15 frames. The ratio of different type of frames in the GOP is determined by the nature of the

video stream and the bandwidth requirement of the output stream.

To parse an MPEG video, we first chop the binary bitstream intobytes. At this point, all the DCT coefficients

are in the quantized format. Thus, we apply an inverse quantization to find the integer valued DCT coefficients.

We obtain the motion vectors after variable length decoding. We reconstruct the scan lines of macroblocks by

indexing the DCT coefficients and motion vectors. The parsing process is computationally much simpler than the

full decoding of MPEG video, which requires application of inverse DCT and motion compensation stages. On

average, the parsing takes3 � 10% of the decoding time [7]-[11] for a GOP.

After we parse the data, we assemble the DCT coefficients and motion vectors of I-frame and P-frames of a

GOP into a frequency-temporal data, which will be used in thesegmentation.

III. F REQUENCY-TEMPORAL DATA STRUCTURE

The frequency-temporal (FT) data structure contains the DCT coefficients and motion vectors of the corresponding

GOP or a set of multiple consecutive GOP’s within a video shot, which is a part of the video between two scene-

cuts. Therefore, the content of the video shot, i.e. the number of objects and their properties, are consistent for the

set of GOP’s. The FT data has three dimensions; spatial horizontal and vertical, and time. Each element of the FT

corresponds to a feature vector,f(t;m; n), that represents the attributes of anM �M macroblock, wheret is the

index of the GOP’s, andm;n are the indices of macroblocks. The vectors belong to the same GOP constitute a

temporal layer.

The feature vector components consists of thed parameters of the I-frame (for all Y,U,V channels), a reduced

set of thea parameters (for Y-channel only), a spatial energy terme, and the accompanying forward-predicted
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motion vectors obtained from the P-frames. Thed anda components only exist for the I-frame in the GOP. Thed parameters represent the average color of the block, thus they can be considered as a subsampled I-frame by a

factor of 8 as shown in Fig. 2. However, not all the color channels are encoded in the same precision. It is often

preferred in the compression of the color data for MPEG that the chrominance channels have half the resolution of

the luminance channel, basically due to the fact that human visual perception is more sensitive to the luminance

variance than the chrominance.

The DCT transform of anM �M image block is defined asdt(u; v) = 2M MXx=1 MXy=1 I(x; y) os �u(2x+ 1)2M os �v(2y + 1)2M (1)

whereu andv are the horizontal and vertical frequencies(u; v = 1; ::;M), andI(x; y) is a pixel. In regular MPEG

syntax, the block size is oftenM = 8. For a block in which the spatial texture is smooth, most of the higher

indexed DCT coefficients have lower values and they reduce tozero after the quantization stage. Another key

observation is that the higher coefficients of the DCT is sensitive to the pattern shifts unlike the magnitude of the

Discrete Fourier Transform, e.g. the spatially shifted versions of the same pattern will have different higher order

coefficients. Since object movement will cause the shifted versions of the same pattern between the I-frames, the

higher order coefficients, in fact, will be different. Moreover, the ordinary image noise, such as salt-and-pepper,

causes changes in the higher order terms. Thus, it only make sense to include a set of certain number of lower

indexed DCT coefficients into the feature vector. In our simulations, we chose 3 main such sets of horizontal,

vertical, and diagonala parameters; ah = 1K � 1 KXi=2 dt(i; 0) (2)av = 1K � 1 KXi=2 dt(0; i)ad = 1K � 1 KXi=2 dt(i; i)
whereK < M . We also define an energy terme to represent the amount of the spatial variance within the

macroblock e = 1M2 MXu=1 MXv=1 dt(u; v) (3)

There is a strong correlation between the energy term and theaccuracy of the motion estimation. A block-matching

based motion estimation of a macroblock that contains smooth texture thus having a lower energy term, may not

be as accurate as estimation for a high energy block since block matching may fail for smooth image regions. The

original MPEG motion vectors are prone to errors due to the block-matching and quantization. Therefore, we apply

a spatial filter to prune the extremities of motion vector field. We first estimate motion vectors of the intra-coded

macroblocks of the P-frames, for which no motion vectors areassigned in the compressed data. We compute the

mean of the motion vectors within a local window and set it as the motion vector of the intra-coded macroblock.
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(a) (b)
Fig. 3. (a) One P-frame motion vector contributes at most four I-frame macroblocks. (b) Forward motion projection exponentially branches

out for more than one P-frames.

We then convolve the refined motion vectors with a Gaussian template to minimize the singularities. There is a

trade of between filtering and boundary accuracy; although an application of Gaussian filter may smear the object

boundaries, not removing the singularities causes more significant segmentation errors. We observed that a3 � 3
window gives the best results for the various sequences thatwe tested. The feature vector at each point of the FT

then defined as f(t;m; n) : [dY dU dV ah av ad e mvx mvy℄Tt;m;n: (4)

Note that, 15 frames of352� 288 spatial resolution color video needs352� 288� 15� 3 pixels in the raw data

domain, however, the corresponding frequency-temporal data has only44� 36� 9 components, which is equal to

a reduction of 320:1 in the data size.

One problem of integrating the motion information into the feature vector is that the motion vectors of P-frames

are back-predicted. In other words, for an I and P frame pair,only the blocks in the first P-frame have their motion

vectors pointing the most similar placements in the I-frame. In other words, motion vector for an I-frame block

does not exists. We convert the motion vectors of the P-framefor the I-frame blocks as illustrated in Fig. 3-a. We

find a motion vector for an I-frame block that points the matching region in the following P-frame. After forward

projecting each P-frame block to the I-frame, we compute theoverlapping areas between the original and projected

blocks. We update the I-frame motion vectors of the overlapped I-frame blocks with respect to the ratio of the

overlapping area to the covered area of this block after all the vectors of P-frame are projected. It is obvious that

for an I-frame block that is entirely covered by the projected P-frame blocks, the motion vector prediction is more

accurate than another frame that is partially covered.

The above forward projection is only applied to the immediate adjoint P-frame due to th fact that the accuracy

of the motion prediction exponentially degrades as illustrated in the Fig. 3-b. Besides, the accuracy of the forward

projected motion vector is limited to the accuracy of the original vectors, which may be inaccurate at the beginning.
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One way to obtain the forward motion vectors is to partially decode both I and P frames and compute optical flow

or motion field between them, which is computationally prohibitive. The generation of the FT data takes1 � 2msec.

on average for a GOP.

IV. V OLUME GROWING

We grow 3D volumes within the frequency-temporal data starting from the seed points. These volumes may

extend between multiple GOP’s. A temporal slice of a volume gives the corresponding region in a GOP. Volume

growing associates the feature-wise similar FT points, macroblocks, into a coherent segment. Since we start grouping

of similar points from a seed point, it is required that the initial seed point is a proper representative of its

3D local neighborhood. The points that have lower variancesin their feature values are candidates. The energy

term gives valuable information about the 2D variance. To enforce the continuity on the temporal dimension, we

choose points that have minimum energy in both frequency andtemporal dimensions instead of only frequency

(argmin f(m;n; t)feg) asf(t;m; n)seed = arg minf(m;n;t) 1Xi;j=�1 1Xj=�1 f(t+ k;m+ i; n+ j)feg (5)

After we select a seed point, we initialize a volume using thefeature vector of the seed point, that is, the

components of the seed point becomes the components of the new volume. We define an active boundary of

points that keeps account of the newly added points to the volume. At the beginning the active boundary has

only the seed point inside. Then, we check the immediate neighboring points of the active boundary points. We

evaluate 6-neighboring points in all 3 directions. Evaluating the points in temporal dimension enables imposing the

assumption that the regions belongs to an object overlap between the consecutive GOP’s. However, in case of a

GOP contains a large number of P-frames, the time distance between the I-frames of two consecutive GOP’s will

increase accordingly, and as a result the overlapping assumption may be weaken. Favorably, most MPEG GOP’s

usually consist of 2-15 P-frames. We compare the feature vectors f of the neighboring points with the volume

feature vectorv. A distance metric is given asÆ(v; f) = !dÆdt(v; f) + !aÆa(v; f) + !mvÆmv(v; f) (6)

where!d, !a and!a regulate the contribution of the DCT coefficients and motionvector distances, which are

obtained as Æd(v; f) = jvfdY g � ffdY gj+ jvfdUg � ffdUgj+ jvfdV g � ffdV gj; (7)Æa(v; f) = jvfahg � ffahgj+ jvfavg � ffavgj+ jvfadg � ffadgj; (8)Æmv(v; f) = q(vfmvxg � ffmvyg)2 + (vfmvxg � ffmvyg)2: (9)

The above weights can be adapted to the given content. We observed that the higher values of the DCT distance

provides more accurate segmentation in case of the motion isinsignificant (e.g. forAkiyo and other head-and-

shoulder sequences). In case there exists fast moving objects with multiple featured regions, the motion distance

carries more discriminating information of objects.
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Fig. 4. Affine motion parameters are fitted using translational motion information.

We apply a threshold� to the above color distance. The threshold determines the precision of the segmentation

process, thus the average size of the volumes. Automatic adaptation of the distance threshold require evaluation of

the segmentation results. We overcome this problem by fusing the similar volumes in the hierarchical clustering

stage. Therefore, any threshold value that prevents from under-segmentation would suffice for our purpose.

In case the distance is less than the thresholdÆ(v; f) < �, the vectorf is included in the volume The volume

feature vector is updated by the averaged means of the corresponding components. The new point is assigned as

an active boundary. After a volume is grown, all the vectors of the volume is removed from the FT. The seed

selection and volume growing process is iterated until no more point remains in the FT. As a post-processing stage,

the volumes that have negligible size (e.g. 1-4 blocks) are removed and the remaining volumes are inflated to fill

up the empty space.

The seed selection is a relatively intensive task since it involves a search for the minimum. One way to speed

it up is to separate minimum search in the layers, i.e. the local minimum in the current 2D layer is searched and

a volume in 3D data is grown, with a twist that the next seed is searched not in the previous 2D layer but in the

following layer. The seed selection and volume growing take0:8 � 1:5mse for a GOP on average.

V. M OTION PARAMETERS

After volume growing, we have the parts of the FT that are consistent in terms of their DCT coefficients and

translational motion distributions. The next task is to fit amotion model to each volume. We accomplish this

by estimating the affine motion parameters of the regions of avolume in the corresponding temporal layers then

averaging the set of individual parameters over all of the layers. Thus, we solve the notorious region of support

problem of motion segmentation by using the segmented regions of the temporal layers. We model the layer-wise
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Fig. 5. (a) A frame fromBream, (b) original MPEG motion vectors interpolated for8�8 blocks, (c) motion vectors after parameter estimation.

motion by a set of affine motion parametersA;B824 mn 35+ 24 mvxmvy 35 = Ax+B = 24 a1 a2a3 a4 3524 mn 35+ 24 b1b2 35 (10)

where [m;n℄T is the block indices. The constant multiplier 8 converts theblock indices to spatial coordinates in

which the original motion vectors are measured.

We estimate translational motionb = [b1; b2℄T for each volume at every temporal layer. We have two translational

motion information sources; one is the average of the motionvectors within the region and the second is the trajectory

displacement. Trajectory of a volume is defined as the set of layer-wise representative coordinates that can be chosen

as the center-of-mass of the corresponding regions. Trajectory is calculated by averaging the coordinates of the points

belong to the volume in a layer. After finding the trajectory coordinates, we take difference to determine trajectory

displacement. We assign the translational motionb as the mean of the average motion and the trajectory displacement

vectors. For a region that consists ofK blocks in a temporal layer, we accumulate the motion vectors[mvkx;mvky ℄T
and its originating coordinates[mi; ni℄T as824 m1 ::: mKn1 ::: nK 35+ 24 mv1x ::: mvKxmv1y ::: mvKy 35� 24 b1 ::: b1b2 ::: b2 35 = A24 m1 ::: mKn1 ::: nK 35Y(2�K) = A(2�2)X(2�K) (11)

where only unknown is the matrixA since we already estimatedB, and the left hand side of the above equationY
is known.X is an2�K matrix, thereforeA = Y=X is the solution in the least squares sense to the overdetermined

system of equationsY = AX . The effective rankR is determined from the QR decomposition with pivoting. A

solutionA is computed which has at mostR nonzero components per column. We compute the affine motion

parametersA;B for every frame of the volume. Motion parameter estimation enables to refine motion field as

illustrated in Fig. 5. This process takes8 � 10ms for a GOP.
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Fig. 6. At each iteration of hierarchical clustering, two most similar volumes are merged.

VI. H IERARCHICAL CLUSTERING

The segmentation algorithm generates volumes, their attributes, and information about how these volumes can be

merged. Since human is the ultimate decision maker in analyzing the results of video segmentation, it is necessary

to provide the segmentation results in an appropriate format to user or for further analysis and application specific

merging. The object tree generated as a result of the hierarchical clustering satisfies this requirement.

We cluster the segmented volumes into objects using their descriptors such as motion parameters and DCT

coefficients. Clustering can be done either by hierarchicalor partitional approaches. Hierarchical methods produce

a nested series of partitions while a partitional clustering algorithm obtains a single partition of the data. We adapt

a hierarchical clustering technique by merging the volumesin a fine-to-coarse manner.

Clustering starts with the volumes generated after the volume growing, thus the initial number of volumes varies

from sequence of sequence. At each iteration of the hierarchical clustering, we merge the pair having the most

similar parameters as shown in Fig. 6. We define a similarity criteria between volumes ass(vi; vj) = 1� 1S Xt (RjAi;t�Aj;tj+ T jBi;t�Bj;tj) (12)

wheret is the temporal layers both volumes are visible,S is a normalization constant, i.e. maximum distance. The

mixture constants are set asT � R to take into account of the fact that a small change in the rotation/scaling

parameters can lead to much larger difference in the modeledmotion field than the translation parameters. We update

the descriptors, i.e. the motion parameters of the volumes,accordingly after each merge. Hierarchical clustering is

iterated until there are only two volumes remain.

At each level of the clustering algorithm, we evaluate whether the chosen volume pair is a valid merge. We keep

track of the change in the similarity term. The sudden drops and small values of the similarity score indicate an
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Fig. 7. Motion, trajectory, and DCT coefficient based similarity scores obtained of the merged pairs in the hierarchicalclustering.

invalid merge. We should note that the consistency of this score depends the definition of the similarity. We observed

that the motion parameter based similarity scores are robust, i.e. it gives a smoother and monotonicaly decreasing

scores while providing accurate clustering results as shown in Fig. 7. The trajectory based motion similarity score

is found to be not as consistent as the motion parameter metric score since it disregards the rotation and sensitive

to the shape of the object, e.g. larger objects tend to have less descriptive trajectories due to the averaging of the

positions of its member blocks. On the other hand, thed coefficient based similarity causes wrong merges since

it disregards the motion information.

Alternatively, we define a cluster validity score�L to provide an answer to the basic question of clustering;

”what should be the optimum number of objects?” as�L = LXi=1 S(vi) Xfi;j2vi ��2(fi;jfmvXg) + �2(fi;jfmvY g)� (13)

wherefjfmvXg; fjfmvY g are the horizontal and vertical motion vector components for the points belong to the

volumevi. S(vi) is the total number of points in the volumevi. We use�2(:) as the variance operator.L is the

current number of volumes at the hierarchical clustering level. In other words, the validity score corresponds to

the total variance of the motion parameters within the all segments. The validity score gets lower values for the

better fitted segments. Thus, by evaluating the minima of this score, we can determine the correct cluster number

automatically. As shown in Fig. 8, the total segment variance suddenly increases in case of an invalid merge. For the

traffic sequence, there are main 3 objects; vehicle on the left, vehicle on the right, and the stationary background. As

visible, the validity score jumps when we merge 3 objects to get 2 objects, which means that the merge is incorrect

and there should be only 3 objects, which is also presented inFig. 13. Similarly, for thetable tennissequence, the

validity score estimates the optimum number of clusters as 2; the ball and the background, since only the ball was

moving for that segment of GOP’s. In addition, the object tree includes the table and the arm as well as shown in

Fig. 14.
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Fig. 8. Validity score�L for two sequences,Traffic and Table Tennis. Arrows indicate invalid merges.

VII. E XPERIMENTS

To test the proposed algorithm, we used different number of GOP’s (2-12), which have various number of P-

frames ranging up to 15. In case of using 12 GOP’s with 1 I-frame, 4 P-frames, and 3 B-frames each, which is a

common configuration, this corresponds to a synchronous segmentation of 96 frames of the original video. When

we construct the frequency-temporal data structure, we employed only the first P-frame after the I-frame to obtain

the forward-predicted motion vectors. We observed that although the inclusion of the following P-frames increases

the computational load, it does not improve the segmentation.

We set the volume growing thresholds once and used the same thresholds for all test sequences. As we explained

before, any threshold value that prevents from under-segmentation would suffice for our purpose since the clustering

stage is designed to merge over-segmented volumes. The distance threshold assigned to a higher value for inter-layer

vector difference than the intra-layer vector difference to exploit the inter-layer growing for the sequences that have

fast motion.

We removed the volumes that are smaller than 4 points, which correspond to a 16�16 raw image region, to

prevent from having an excessive number of volumes. Theinitial images in Figures 9-14 show the segmentation

results for an I-frame of the first GOP layer for each test sequence after the volume growing stage. As visible,

the objects that have similar DCT coefficients and motion vectors are accurately detected even at the coarse block

resolution, which shows the effectiveness of the compressed domain segmentation.

Figure 9 shows an I-frame, the initial segmentation and the object tree for theakiyo sequence, where both of

the validity and motion parameter similarity based metricsindicate the optimum number of clusters is 2 (the head

and the background since head had the most discriminating movement for that group of GOPs). Figure 10 presents

the segmentation results for theLab sequence. The validity score suddenly changes at the clustering level 2, which

shows there should be two clusters, i.e. person and background. Figure 11 gives results for thebreamsequence.
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TABLE I

COMPUTATIONAL LOAD OF A GOP (FOR A 352�288VIDEO - 44�36 BLOCKS)

Parsing 0.2� 0.7 msec

FT Generation 0.5� 1 msec

Seed Selection & Volume Growing 2 � 3 msec

Motion Parameter Estimation 8 � 10 msec

Hierarchical Clustering 2 � 4 msec

We observed that the validity score gives the optimum at the clustering level 3 due to the fact that the upper fin of

the fish has different movement. Ideally, the optimum numbershould be 2, however, not all regions of the fish has

the same motion.

We show an I-frame from thechildren sequence and its object-tree in Figure 12. The computed validity scores

changes suddenly after the clustering level 3, which indicates the optimum segments are the moving head of the

boy on the left, the body of the boy on the right, and the background. The segmentation results for a GOP of

the traffic is given in Figure 13. As shown in Figure 8, the validity scorefor this video jumped when we tried

to merge 3 remaining objects. We observed that the validity score for the sequence increased at level 2. These

results confirm with the motion existing in the scene, and proves effectiveness of the proposed algorithm even if

the objects are small in comparison to the frame size.

As visible in these results, the motion parameter based similarity measure can detect the small motion variances.

Although a fast moving single small object may invalidate the overlapping regions assumption and appear as separate

objects in different layers, we observed that, for the moderate motion sequences, the trajectories are continuous

and segmented region boundaries are accurate. We also concluded that the segmentation process is not sensitive to

the minor threshold perturbations which gives additional flexibility. The proposed algorithm is faster than real time

video playing speed. The total segmentation time includingthe MPEG parsing varies in the range of10 � 20ms
for a GOP on a P4 3Ghz platform depending on the number of initial objects after the volume growing as shown

in Table I. Most computations are involved in motion parameter fitting stage. Favorably, the speed is not influenced

by the complexity of the motion. Since the GOP’s corresponded to the 8 frames of the original raw data in this

computational analysis, the proposed algorithm achieves on average0:9 � 2ms processing speeds per frame.

VIII. S UMMARY

We present a real-time object segmentation method for MPEG encoded video. Our method fuses the motion and

frequency information. After parsing an MPEG video into theDCT coefficients and motion vectors, we construct

a 3D frequency-temporal data structure and grow volumes by starting from selected seed points. The volume

growing gives the connected parts of video that have consistent DCT coefficients and motion parameters. For each

volume, we determine a set of volume descriptors, includingtrajectorial motion, affine motion, color, representative

DCT coefficients. At the final stage, we iteratively merge thesimilar volumes using their descriptors to obtain a
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Fig. 9. An I-frame fromAkiyo, and the segmentation results at the corresponding clustering levels including the background. Both validity

and similarity based metrics indicate the optimum number ofclusters is 2.

hierarchical object-partition tree. We compute a validityscore to assess the quality of the current segmentation

results at each level of the object tree. As shown in the presented results, our method gives accurate segmentation

maps.

As future work, we plan to use the compressed domain processing as a precursor to improve the uncompressed

domain segmentation.
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Fig. 11. An I-frame fromBream, and the segmentation results at the corresponding clustering levels. Validity score claims that the segmentation

is optimum at the level 3 due to the fact that the upper fin of thefish has different movement.
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Fig. 12. An I-frame fromChildren, and the segmentation results at the corresponding clustering levels. Validity score indicates the optimum

number of clusters should be 3; moving head of the boy on the left, body of the boy on the right, and background. However, oursystem enables

the end user to choose any level in the object tree.
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Fig. 13. An I-frame fromTraffic, and the segmentation results at the corresponding clustering levels. The validity score indicates the optimum

segment number should be 3 including the background.
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Fig. 14. An I-frame fromTable Tennis, and the segmentation results at the corresponding clustering levels. The validity score for this sequence

jumped at level 2.

May 24, 2005 DRAFT


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2005-040.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20


