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Abstract— An adaptive transmit diversity scheme with quadrant
phase constraining feedback is proposed in this paper. With simple
linear operations at both transmitter and receiver, the proposed al-
gorithm can achieve better system performances with only �������
bits of feedback information for systems with � transmit antennas.
Theoretical performance bounds of the proposed transmit diversity
scheme are derived. Simulation examples and theoretical analyses
show that the proposed transmit diversity scheme outperforms not
only the conventional open-loop transmit diversity techniques, but
also some closed-loop transmit diversity techniques with more infor-
mation transmitted in the feedback channel.

I. INTRODUCTION

The next generation wireless communication systems are re-
quired to provide high quality voice services as well as broadband
data services with rates far beyond the limitations of current wire-
less systems. To achieve this goal, one of the key technologies
employed by emerging wireless systems is transmit diversity.

The most commonly used transmit diversity technique is or-
thogonal space time block code (STBC) [1], which can achieve
full diversity order without any knowledge of the fading channel,
and it is classified as open-loop transmit diversity technique. On
the other hand, partial or perfect information of the fading channel,
if available at the transmitter through separate feedback channel
(closed-loop), can be utilized to further improve the performance
of the diversity system [3]-[7]. Most of the closed-loop diversity
techniques require the feedback information to be complex-valued
matrices or vectors with elements either directly being the channel
impulse response (CIR), or some statistics (e.g., mean or covari-
ance) of the CIR. It’s apparent that considerable bandwidth in the
reverse link will be consumed by the feedback information.

To overcome this problem, optimum quantization [6] are ap-
plied in transmit antenna array (TxAA) to reduce the amount of
feedback information, and it will show in this paper that the com-
putational complexity of optimum quantization increases expo-
nentially with the number of antennas and quantization bits. An-
other closed-loop transmit diversity with less feedback informa-
tion is introduced in [7] as adaptive space time transmit diversity
(ASTTD), and it is extended from the open-loop STBC, therefore
it can only be used for systems with two transmit antennas for full
rate systems [2].

In this paper, a simple adaptive transmit diversity scheme with
quadrant phase constraining feedback is proposed for systems with
arbitrary number of transmit antennas, and the objective of this
diversity technique is to achieve better system performance with

less feedback information and less computations. It is observed
in this paper that for systems with � transmit antennas, 	
���	
bits of feedback information will guarantee the performance im-
provement over corresponding open loop transmit diversity sys-
tems. A new quadrant phase constraining method is introduced
for the computation of the feedback information, and the com-
putational complexity is only linearly proportional to the number
of transmit antennas, as opposed to the exponentially increasing
complexity of TxAA with optimum quantization [6]. Based on
the statistical properties of the received signals, theoretical error
probability bounds are derived for the proposed transmit diversity
technique.

Theoretical analyses and simulation results show that our bi-
nary adaptive transmit diversity technique outperforms not only
the conventional open-loop diversity techniques, but also some of
the closed-loop techniques with more information transmitted in
the feedback channel.

II. SYSTEM MODEL

We consider a system with � transmit antennas and one receive
antenna, and the block diagram of the baseband representation of
the diversity system is shown in Fig. 1.

At the time instant � , the modulated symbol ������� with unit
energy is linearly pre-encoded in the space domain by the space
encoding vector � ����� ����� �! #" �%$&� �' #"�()()(*" �%+,� �! .-/�10 �32'+ at the
transmitter, where � is the modulation symbol set. The encoded
transmit vector is 4 � �5� 67�&� �' 8" 6%$
� �' #"�()()(*" 6%+�� �' .- � � � ('� � ,
with 6%9�� �' being transmitted at the : th transmit antenna. In the
adaptive transmit diversity described in this paper, the space en-
coding vector � � is determined by the feedback information sent
back from the receiver.

At the receiver, the received signals are the sum of the propaga-
tion signals from all the transmit antennas plus additive noise, and
the samples at the receiver can be expressed by

; � �' �
< =?>
� ()4 ��@A�CBED�� �

< =?>
� ( � � ��@A�  A(3� �FBD�� " (1)

where
=?>

is the total transmit energy of all the transmit anten-
nas, D�� is the additive white Gaussian noise (AWGN) with vari-
ance GIH�J�	 per dimension, @A� �K� L7��� �! #" LM$&� �' #"�()(�(N" L%+�� �' O-QPR�0 +�2!� is the time-varying channel impulse response (CIR) of the
fading channels, with L%9S� �' being the CIR of the fading channel
between the : th transmit antenna and the receive antenna, and� (  P denotes matrix transpose.
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Fig. 1. The block diagram of the system with transmit diversity.

With the system model defined in (1), it is well known that the
optimum precoding vector �� � that maximizes the output SNR is
[5], ��A� � @
	 �@ ��@ 	 � " (2)

where � (  	 denotes matrix Hermitian. Forming this optimum
vector requires perfect knowledge of the channel CIR vector @/� ,
which contains 	
� real-valued scalars. The amount of feedback
can be reduced with optimum quantization [6], which chooses the
quantized space encoding vector ��A� as follows� � argmin������� �� � @ � @ 	 � �� 	 � " (3)

where � is the set of all the possible quantized space encoding vec-
tors, and it contains 	���� +��N��� possible vectors for systems with �
bits quantization. In order to find the optimum quantization vector,
the receiver must exhaustively compute the values of ��A� @ � @
	 � �� 	 �
for all the 	���� +��N��� possible vectors to choose the optimum one,
and each computation involves approximately � $ complex mul-
tiplications. Therefore the total amount of computational com-
plexity incurred by the feedback information alone is in the order
of � � 	���� +������! 	  � $  , which is quite considerable when the
number of antennas is larger than 2.

To balance the system performance, the size of feedback infor-
mation, and the system computational complexity, a suboptimum
adaptive transmit diversity scheme with quadrant phase constrain-
ing feedback is discussed in the next section.

III. ADAPTIVE TRANSMIT DIVERSITY WITH QUADRANT

PHASE CONSTRAINING FEEDBACK

For systems with � transmit antennas, we define the space en-
coding vector as

� � � " �$#&%(' �*),+ -/. � � �10$ -�()()(2#&%(' � ),+ -43 � � �10$ -65 " (4)

where 7 $ � �8� , and 9&: � �' �<;�='"&�
" 	'"?>(@ , for : � 	 "?>!")(�()(7" � ,
are the feedback information from the receiver. For consistence
of representation, we let 9�A � �' � = , BN� . By such definitions,

each 9C: � �' contains two bits of information, and there are totally	 � � �D�  bits feedback information used to form the space encod-
ing vector � � .

Combining (1) and (4), we can write the received sample ; � �' 
as

; � �' �
< = >
�

E +F
9HG � #I%('KJ 7*(&9 9 � �' 4L	 M LM9�� �' ON�(3� �CBD���P (5)

At the decoder, the decision variable Q � �' is obtained by multiply-
ing the received sample ; � �' with � � ��@ �  	 , and it can be written
by

Q � �! � < =?>
�SRRRRR

+F
9HG � #I%(' J 7*(C9 9�� �' 4L	 M LM9�� �' RRRRR

$
(�� � BUT&� "

(6)

where T&� ��� � ��@A�  	 D�� is the noise component with varianceV � ��@ � V $ GSH . According to (6), the instantaneous SNR of the deci-
sion variable Q � �' is W

�
W
H ( �1X�Y B X �  8" (7)

where

W
H �[Z]\^
_ is the SNR without diversity, and X�Y and X � are

defined as`ba G �+ 3c:ed A�f g : � � � f .Ih (8a)`bi G $+ 3c:ed A 3cj dk:ml A n8o(g : � � � gOpj � � �&q/rIsut )�+ 0 - : � � �v� - j � � �$ wkx h (8b)

where y � (  is the real part operator. In (8), X�Y and X � represent
the SNR improvement contributed by the transmit diversity, and
they are called diversity gains. As defined in (8a), X�Y is the con-
ventional diversity gain, which is fixed for a certain value of � ,
while the feedback diversity gain X � is the extra gain contributed
by te feedback information. By choosing appropriate value of the
feedback information 9 9 � �' , we can improve the values of the
feedback diversity gain X � , thus the overall system performance.

We choose 9 9 � �' such that all the summed elements of X � are
non-negative. According to (8b), one of the summed elements ofX � can be written byy{z L 9 � �' L}|~ � �' �#&%�' J 7*(CL 9 9 � �' ��9 ~ � �' 	 M�� �V L 9 � �' V�V L ~ � �' V��I��� ����� 9 ~  #" (9)

where ����9 ~ ����9 � � ~ B - : � � �/� - j � � �$ L with ��9 � � ='" 	OL* be-
ing the phase of L%9�� �' . The terms described in (9) will be non-
negative if the following condition is satisfiedV ����9 ~ V�� L J&	 " B7:����� P (10)

One direct way to satisfy the condition of (10) is adjusting 9 9�� �' 
so that all the rotated phases ��9 B - : � � �$ L , for : � �
" 	'")()(�(7" � ,
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Fig. 2. The four quadrants of the coordinate system.

are in the same coordinate quadrant, therefore we call this method
quadrant phase constraining. Without loss of generality, we keep
the phase �&� of the first sub-channel L���� �! unchanged, and rotates
the phases � 9 of all the rest sub-channels by - : � � �$ L so that the
rotated phases are in the same quadrant as � � . Since there are
four quadrants, two bits information of each 9 9 � �' are enough to
achieve this goal.

If we label the four quadrants of the Cartesian coordinate system
as shown in Fig. 2, then the quadrant number of any angle

� �� ='" 	OL* can be computed as � $��0�� , where � ( � denotes rounding to
the nearest bigger integer. With the analyses above, the feedback
information 9 9 � �' for : � 	 "?>!")(�()(7" � can be computed at the
receiver based on the phases of the estimated CIRs9 9 � �! � �
	 	 ���L�� � 	 	 ��9L����� " (11)

where ���  �� denotes the residue of �^ with ���  �� � � ='" G � �8- . An
example is shown in Fig. 2 with � � in quadrant II and ��9 in quad-
rant IV. With (11), we can get that 9 9�� �' � 	 , which corresponds
to rotate ��9 by L radians count-clockwise, and the rotated phase��9 B - : � � �$ L is in quadrant II.

The feedback information defined in (11) guarantees that all the
elements described in (9) are non-negative B7:����� , and the diver-
sity gain X � contributed by the feedback information can be written
by X � � 	�

+F
9 G � +F~ GN9�� � V LM9 � �' V�V L ~ � �' V�V��I��� �*����9 ~  V P (12)

Combining (6), (8) and (12), we will have the output SNR

W
at the

detectorW
�

W
H?(�� �� +F

9HG � V LM9�� �' V $ B
	�

+F
9 G � +F~ GN9�� � V LM9�� �' V V L ~ � �' V V��&��� �*����9 ~  V � P (13)

When � � 	 , we can see that the conventional diversity gain X(Y
is exactly the same as the diversity gain of the orthogonal STBC
encoder. The quadrant phase constraining feedback proposed in
this paper will guarantee that X ��� = , thus the proposed adaptive
transmit diversity will consistently outperform the conventional
orthogonal STBC. Moreover, full rate orthogonal STBC can only
be implemented for systems with 2 transmit antennas, while the
proposed diversity scheme can be implemented for systems with
arbitrary number of transmit antennas. This is extremely useful for
high speed downlink data transmission of next generation wireless
communication systems, where higher diversity order are required
to guarantee high data throughput in the downlink with multiple
transmit antennas and one receive antenna.

Moreover, the computational complexity of the proposed algo-
rithm is much lower than TxAA with optimum quantization. The
feedback information of the proposed diversity scheme is com-
puted for each antenna separately, therefore the computational
complexity of our algorithm is linearly proportional to the number
of transmit antennas. Moreover, the computation of each of the
feedback coefficient � 9 � �' involves approximately 2 real multi-
plications. Therefore the computational complexity of the pro-
posed algorithm is in the order of � � � � � �3  	
 . According
to the analyses above, we define the ratio  between our diversity
scheme and TxAA with optimum quantization as � � � � �  	 ��� +������  � $  �C=�="! P (14)

For systems with M = 4 Tx antennas and 2 bits representation of
each element of the space encoding vector, we have  � = P >#! ,
which means the proposed transmit diversity scheme needs only= P >#! of computation of TxAA with optimum quantization to
achieve similar performance. Even larger computational saving
can be observed for systems with more antennas.

IV. PERFORMANCE ANALYSIS

In this section, theoretical performances bounds of the proposed
transmit diversity scheme with binary phase shift keying (BPSK)
modulation in Rayleigh fading channels are analyzed.

The error probability of a system over fading channels can be
computed by $

� =  �&% �('H
$
� = V W  �) W " (15)

where

$
� = V W  is the conditional error probability (CEP), and

W
is

the instantaneous output SNR. For systems with BPSK modula-
tion, the CEP can be written by [8, eqn. (23)]$

� = V W  � �L %+* .H #I%('KJO� W��,.- $ � M ) � P (16)

With the expressions of

W
given in (13), it is difficult to get the

closed form expressions of the the probability density function



(pdf) of

W
. Therefore, we resort to the upper and lower bound of

the error probability instead of directly evaluating the exact error
probability.

To obtain the upper bound of the error probability, we simply set
the feedback diversity gain X � � = , and the corresponding SNR

W��
becomes W �

�
W
H�
+F
9HG � V L �b: V $ P (17)

The SNR

W��
scaled by the factor � has similar form as the out-

put SNR of maximal ratio combiner (MRC). For Rayleigh fading
channel,

W �
is � $ distributed with 	&� degrees of freedom, and

the upper bound error probability

$ �
� =  is [8, eqn. (23)]$ �

� =  � �L % * .H +�
9 G � � � B �W 9��, - $ � � ��� ) � " (18)

where �W 9 is the average SNR of the : th sub-channel given by�W 9 �
W
H� ( = � V L 9 � �' V $  � W

H� (�� $9 " (19)

with � $9 being the variance of the CIR L%9S� �' .
Next we are going to find the lower bound of the system error

probability

$ � � =  with the help of the output SNR. The feedback
diversity gain of the proposed transmit diversity scheme is given
in (12), and it can be easily seen that

X � � 	� ( +F9HG � +F~ GN9�� � V L 9 � �! V V L ~ � �! V P (20)

Based on (20), we define the SNR corresponding to the lower
bound error probability as	 � 
 	���� ����������� � ������� �  �! �  ������� ��"#�$��%���� � �&����� �'� � "(����� � )&*
 	 ��� ����������� � � ����� � )  ,+ (21)

It is interesting to note that the SNR

W �
has exactly the same

form as the output SNR of coherent equal gain combiner (EGC)
[9, eqn. (1)] with � receive antennas and one transmit antenna.
Therefore, the lower bound error probability

$ � � =  can be ex-
pressed in the same form as the error probability expression for
EGC receivers [9, eqn. (20)]- � ��./� 
10� � 02436587  � 9;:�< � �>=@?BADC �EGF A �BC HJILK � �8M =@?�ANC �PONQ C * (22)

where R � (  is the imaginary part operator, the function
� � 6  is

defined as� �TS ��G 3U:ed A�V AXW�ADY � h �$�Z �\[] : S .�_^ � )k+ Sa` 0 [] :� q/rIs Y �/[] : S .�b^�c h (23)

�ed ����� "b�8f �  is the confluent hypergeometric function of the first
kind, and �W 9 is the average SNR of the : th sub-channel defined
in (19).

With the upper bound and lower bound error probability given
in (18) and (22), the error probability

$
� =  of the proposed algo-

rithms in uncoded communication systems can be expressed by
$ � � =  � $

� =  � $ �
� =  P (24)

V. SIMULATION EXAMPLES

Simulation examples for both uncoded systems and 3GPP high
speed downlink data packet access (HSDPA) systems [10] are
given in this section to evaluate the performance of the proposed
diversity scheme.

In Fig. 3 are shown the uncoded BER performances of vari-
ous transmit diversity schemes for BPSK systems with 2 transmit
antennas and 1 receive antenna. It is assumed that there is no feed-
back delay in this example. It can be seen from Fig. 3 that the pro-
posed algorithm outperforms the standard orthogonal STBC up to
2 dB. Moreover, we can see that the theoretical lower bound pre-
sented in (22) is only 0.2 dB away from the simulation results,
which means the lower bound is very tight. It should be noted that

$ � � =  is also the lower bound for TxAA with optimum quantiza-
tion. Therefore our algorithm has nearly the same performance as
optimum quantization, but with much less computation.

In Fig. 3 we also show the BER performances of the closed-
loop ASTTD [7] with 2 real-valued scalars as feedback. With
less feedback, our algorithm is better than ASTTD for about 0.8
dB. This example demonstrates that our adaptive transmit diversity
scheme outperforms not only conventional open-loop transmit di-
versity techniques, but also closed-loop algorithm which require
more information in the feedback channel.
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Fig. 3. Comparison of various transmit diversity schemes for systems with 2
transmit antennas

STTD and ASTTD can be implemented for systems with ex-
actly 2 transmit antennas. However, the new adaptive transmit
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Fig. 4. The effects of transmit antenna number on the performance of the proposed
algorithm.

diversity algorithm can be used for systems with arbitrary num-
ber of transmit antennas. Fig. 4 shows the BER performances
of the transmit diversity systems with different number of trans-
mit antennas. From the figure, we can see that the performance
of the proposed algorithm improves almost linearly with the in-
creasing number of transmit antennas. It is worth pointing out that
the theoretical upper bound corresponds to the performance of or-
thogonal STBC. Even real orthogonal design exists for � � 	
(e.g., � � �

, � ��� , [2]), it can be seen from Fig. 4 that no
apparent extra performance gain can be achieved with orthogonal
STBC when � � �

. However, with the algorithm proposed in
this paper, the system performance improves almost linearly with
the number of transmit antennas.

The next example is used to illustrate the performance of the
algorithms in practical High Speed Downlink Packet Access (HS-
DPA) WCDMA systems [10]. The simulation parameters are de-
fined according to the HSDPA technical specifications [10] and are
shown in Table 1. The frame error rate (FER) of different trans-
mit diversity algorithms in HSDPA systems are shown in Fig. 5,
and the results are consistent with those obtained from uncoded
TDMA systems. This example justifies the implementation of the
newly proposed algorithms in practical communication systems.

Table 1. Simulation Parameters for 3GPP HSDPA Systems
Carrier Frequency 2 GHz
Spreading Factor (SF) 16
Number of Multicodes (

^ a ) 10
Frame Length 2ms
Chip Rate ( � a ) 3.84 Mbps
CPICH power � H����
	��Z a
 �
	�� � H��
�
	��  �
	 a variable
Channel Coding Turbo, rate ��� G��  �
Fading Model one path Rayleigh
Correlation Model i.i.d.
Channel Estimation perfect
Modulation 64 QAM
Feedback Delay 4 TTI
Data Rate 10.8Mbps
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Fig. 5. Performances of transmit diversity in turbo coded HSDPA system.

VI. CONCLUSIONS

In this paper, a novel adaptive transmit diversity scheme with
quadrant phase constraining feedback is proposed for wireless
communication systems. The algorithm proposed in this paper can
achieve better system performance with less feedback information
and less computational complexity. Simulation results show that
the performance of the proposed algorithms is up to 2 dB bet-
ter than the performance of open-loop STBC. When compared
with other closed-loop techniques, the performance is better than
or nearly the same as the performance of some closed-loop algo-
rithms, even much less feedback information and computations are
required by our approach.
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