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Abstract

Group elevator scheduling is an NP-hard
sequential decision-making problem with un-
bounded state spaces and substantial uncertainty.
Decision-theoretic reasoning plays a surprisingly
limited role in fielded systems. A new
opportunity for probabilistic methods has opened
with the recent discovery of a tractable solution
for the expected waiting times of all passengers
in the building, marginalized over all possible
passenger itineraries [Nikovski and Brand,
2003]. Though commercially competitive, this
solution does not contemplate future passengers.
Yet in up-peak traffic, the effects of future
passengers arriving at the lobby and entering
elevator cars can dominate all waiting times.
We develop a probabilistic model of how these
arrivals affect the behavior of elevator cars at
the lobby, and demonstrate how this model can
be used to very significantly reduce the average
waiting time of all passengers.

1 INTRODUCTION

Group elevator scheduling is a well-known hard industrial
problem characterized by huge state spaces and significant
uncertainty [Barney, 2003]. When a new passenger arrives
and requests elevator service by pressing a hall-call button,
the group controller must assign the passenger to an
elevator car with the goal of minimizing his/her waiting
time, as well as the waiting times of all existing and future
passengers.

The stream of arriving passengers is a stochastic process,
which introduces substantial uncertainty in decision
making. Each passenger is described by three random
variables: time of arrival, floor of arrival, and desired
destination floor. All of these variables are sources of
uncertainty that must be considered when deciding which
car will service a newly arrived passenger.

It is helpful to classify passengers into several groups,
according to the type of uncertainty they introduce into the
decision-making process:

1. The newly-arrived passenger, whose arrival time and
floor are known, but whose destination of travel is not
known. In most elevator systems, only the desired
directionof travel is known, as indicated by pressing
one of two hall-call buttons.

2. Existing passengers who have already arrived, but
have not boarded a car yet. Like the newly-arrived
passenger, their respective arrival times, floors, and
desired directions of travel are known, but their exact
desired destination floors are uncertain.

3. Future passengers who have not arrived yet. Nothing
about such passengers is certain, and only the
stochastic parameters of their arrival process are
known or can be estimated from data.

An assignment decision influences the waiting times of all
three groups of passengers, so the uncertainty introduced
by each of them has to be considered.

Ideally, a group elevator controller would compute the
marginal costs of all possible assignments with regard to all
sources of uncertainty before making a decision. Instead,
due to the insurmountable computational complexity of this
problem, the vast majority of commercial group elevator
schedulers choose to ignore some or all of this uncertainty,
typically resorting to heuristic methods.

The earliest schedulers used the simple heuristic principle
of collective group control, under which a car stops to
service the nearest call in its current direction of movement
[Strakosch, 1998]. Such scheduling is very sub-optimal,
and also very unpredictable. For this reason, collective
control is considered unacceptable in several Pacific rim
societies including Japan, where social norms dictate that
passengers should be notified about which car would pick
them up immediately upon requesting service.



Another group of algorithms is based on minimization of
the remaining response time (RRT) for each passenger,
defined as the time it would take for each existing
passenger to be picked up by the car prescribed by the
current schedule [Powell and Williams, 1992]. These
algorithms focus on minimization of the waiting time of
existing passengers only, and ignore altogether the effect
of the current assignment on the waiting times of future
passengers.

Within the algorithms based onRRT minimization, a
further distinction can be made between those that ignore
the uncertainty associated with the desired destination
floors of existing passengers (ESA, FIM, DLB) [Powell
and Williams, 1992, Bao et al., 1994], and those that can
properly compute the expectedRRT of each passenger
with respect to this uncertainty (ESA-DP) [Nikovski and
Brand, 2003]. The uncertainty associated with future
passengers, however, is an entirely different matter.
Properly accounting for the effect of the current decision on
the waiting times of all future passengers is an extremely
complicated problem, for at least two reasons. First,
uncertainty associated with future arrivals is much higher
— not only is the exact destination floor unknown for
future passengers, but also their arrival times and floors
are unknown too. Second, the current decision potentially
influences the waiting times of passengers arbitrarily far
into the future, which makes the optimization horizon of
the problem infinite.

In spite of the computational difficulties, ignoring future
passengers often leads to very sub-optimal results. The
current assignment affects the future trajectories of the cars,
and influences their ability to serve future calls in minimal
time. One particularly important situation that exemplifies
this effect occurs in up-peak traffic — a regime where most
passengers arrive at the lobby of the building and request
service to one of the upper floors. Up-peak throughput
is typically the limiting factor that determines whether an
elevator system is adequate for a building.

Consider the following scenario: A hall call is made
somewhere above the lobby, a single car has stopped at the
lobby, and the controller decides that this is the optimal
car to serve the current call, based only on the projected
waiting times of existing passengers. If the lobby car
is dispatched to serve the new call, the lobby remains
uncovered and future passengers arriving there will have
to wait much longer than if the car had stayed at the
lobby. This short-sighted decision, commonly seen in
conventional controller traces, has an especially severe
impact in up-peak traffic, since the lobby quickly fills with
waiting passengers while the car services the lone caller
above.

Suppose, however, that there existed another car above
the lobby, which could serve the current hall call almost

as fast as the one at the lobby; assigning the new call to
it would result in a small short-term loss in the waiting
time of the passengers who have just arrived, but this loss
is likely to be compensated by a much larger long-term
gain in the waiting times of future passengers at the lobby.
Thus, a controller that could take into consideration the
waiting times of future passengers is likely to have an
advantage over a greedy and short-sighted controller that
ignores them.

Several methods have been proposed to account for the
wait of future passengers, with varying success. Some
controllers use fuzzy rules to identify situations similar to
the one discussed above and make decisions that are more
robust to future events [Ujihara and Tsuji, 1988]. This
approach, however, has major disadvantages, such as the
need to determine and encode the rules manually, as well as
the often unintended manner in which fuzzy-rule inference
interpolates between them.

Another approach to accounting for the wait of future
passengers has been proposed by Crites and Barto, who
recognized that group elevator scheduling is a sequential
decision making problem and employed the Q-learning
algorithm to asynchronously update the expected costs-to-
go (future passengers’ waits) of all states of the elevator
bank [Crites and Barto, 1998]. They dealt with the huge
state space of the system by means of a neural network
which compactly approximated the costs-to-go of all states.
Their approach is well founded in decision theory and
holds significant promise, but its computational demands
render it completely impractical for commercial systems.
It took 60,000 hours of simulated elevator operation for
the algorithm to converge for a single arrival profile, and
the resulting reduction of waiting time with respect to
other much faster algorithms was only 2.65%, which does
not justify its computational costs. Crites and Barto only
reported experiments for one down-peak traffic profile and
made no comments on other traffic regimes; due to the
computational costs, experimentation in varied up-peak
regimes is not practical.

In contrast to these labor-intensive and computationally
expensive methods, we propose a decision-theoretic
approach to choosing the optimal car assignment with
respect to both existing and future passengers in up-peak
traffic. While it makes some simplifying assumptions of
its own, it provides quantitative estimates of the trade-off
between waiting times of existing and future passengers,
so that a rational scheduling decision can be made. The
resulting algorithm is fast and clearly outperforms the state
of the art, typically reducing passenger waits by 5% to
55%.



2 WAITS OF FUTURE PASSENGERS

In typical up-peak traffic, between 80% and 95% of all
future passengers arrive at the lobby. The waiting times
of these lobby arrivals is the dominant component in
the overall waiting time of future passengers, and the
current decision of the scheduler should primarily attempt
to minimize the wait at the lobby. Hence, we will begin
with the simplifying assumption thatall future passengers
will arrive at the lobby. The effect of unmodelled above-
lobby future arrivals will shorten the time-horizon in which
predicted waits are accurate; this will be explicitly worked
into the calculations later as a discounting factor.

Under the lobby-arrivals-only assumption, it can be seen
that the current decision of the scheduler affects the
waiting times of future passengers only through the future
landing times of cars at the lobby. Calculating these
landing times effectively marginalizes out individual future
lobby passengers. The optimal strategy to service lobby
passengers is to send all cars to the lobby immediately after
they have completed servicing their prior commitments
to existing passengers. For a building withC shafts,
define a lobby landing patternto be an array of times
T .= [T1,T2, · · · ,TC], Tj ≥ 0, whereTj is the arrival time of
car j = 1..C at the lobby after it has delivered all of its
assigned passengers. Since there is uncertainty about the
destinations of passengers currently assigned to a car but
not yet boarded, the landing patternT is a (vector-valued)
random variable with a probability distributionP(T), T ∈
T over the space of all possible landing patternsT .

Ideally, the scheduler should compute the expected waiting
time V(T) for each possible landing patternT ∈ T , and
take the expectation of that time with respect to the
probability distributionP(T):

〈V(T)〉=
∫

T∈T
P(T)V(T)dT. (1)

The integral gives the exact estimate of the waiting times
of lobby passengers under the lobby-arrivals assumption,
but it is not computable because the probability distribution
P(T) can only be known through explicit enumeration
of all (countably infinite) possible future scenarios via
simulation. Even if there were an analytic form for
P(T), the size of the (finite) spaceT of all possible
landing patterns is huge; integrating over it is not practical
computationally. Instead, we will use as a substitute the
landing pattern consisting of the individualexpectedarrival
times of each car̄T = [T̄1, T̄2, ..., T̄C] = [〈T1〉,〈T2〉, ...,〈TC〉],
and will employ the approximation〈V(T)〉 ≈ V(〈T〉) =
V(T̄). Note that the equality〈T〉 = T̄ is true because
each of the componentsT j , j = 1..C, is an independent
random variable whose uncertainty depends only on the
probability distribution over the destinations of passengers
assigned to carj. For the same reason, we may expect the

approximation itself to be quite good on average.V(T̄)
can be tractably computed using the recently introduced
ESA-DP (empty the system via dynamic programming)
algorithm [Nikovski and Brand, 2003], which efficiently
computes the exact expected arrival time of each carT̄i

(with respect to its current passenger pick-up commitments
and their uncertain destinations).

So far we have considered the arrival patternsT andT̄ as
functions of afixed existing assignment of passengers to
cars. However, the current decision of the controller—
namely to which car the current hall call should be
assigned—changes this assignment: Since the controller
has a choice betweenC cars, there areC possible resulting
assignments and henceC possible distributions over
landing patterns. If we want to employ the approximation
discussed above, we need the expected landing pattern
T̄(i) = [T̄i1, T̄i2, · · · , T̄iC], i = 1..C, which would occur if the
current call is assigned to cari. The meaning of each entry
T̄i j is the expected landing time of carj if the current hall
call is assigned to cari.

Once the matrix ofC landing patterns is built, the expected
cumulative waiting time of lobby passengers corresponding
to each of theC landing patterns (rows of the matrix) can
be computed. We now develop a procedure for computing
the cumulative waiting time of future lobby passengers as
a function of any landing patternT = [T1,T2, · · · ,TC].

Since the waiting time of future lobby passengers at the
lobby is invariant with respect to the particular order of car
arrivals (e.g., it makes no difference whether car 2 arrives
in 10 seconds and car 3 arrives in 50 seconds, or vice versa,
since both will be empty in up-peak traffic), we assume that
the landing patternT is already sorted in ascending order:
0≤ T1 ≤ T2 ≤ . . . ≤ TC. Under this assumption, we define
V0(T) to be the expected cumulative waiting time of all
future lobby passengers within the time intervalt ∈ [0,TC]:

V0(T) .=
∫ TC

0
n(t)dt, (2)

wheren(t) is the expected number of people waiting to be
picked up at the lobby at timet.

Before presenting the computational procedure, we will
discuss the need to introduce exponential discounting of
future waiting times because of a bias in the predicted
landing times. The bias is due to our approximating
assumption that no future arrivals above the lobby will
occur before the end of the landing pattern. In reality,
such calls do occur, albeit infrequently; since they have to
be accommodated by the cars in service, these cars will
be delayed in reaching the lobby. Thus the landing times
estimated by theESA-DP algorithm may underestimate the
actual times, very modestly for near-future predictions and
significantly for far-future predictions.

A standard method to discount estimates far into the



future is to multiply them by exp(−βt), whereβ > 0 is
a discounting factor [Bertsekas, 2000]. Similarly to the
case above, we define the expecteddiscountedcumulative
waiting time of lobby passengers to be

Vβ(T) .=
∫ TC

0
e−βtn(t)dt. (3)

Consider splitting the interval[0,TC] into C different
intervals [Ti−1,Ti ], i = 1..C (setting T0 = 0). On first
consideration, it would seem that the expected number of
people waiting at timet ∈ [Ti−1,Ti ] is proportional to the
time elapsed since the last time a car visited the lobby
(Ti−1). If we model that arrival of lobby passengers as
a Poisson process with rateλ, the expected number of
people waiting is simplyn(t) = λ(t−Ti−1), and the integral
above splits intoC easily evaluable parts. (We assume here
that cars pick up instantly all people they find waiting at
the lobby, since load times are very small relative to wait
times).

Unfortunately, this reasoning ignores the fact that if car
i reaches the lobby and finds it empty, it will not depart
immediately (at its arrival timeTi), but will wait at the
lobby until the next future passenger arrives and boards.
Furthermore, this approach cannot handle a very important
special case: If there are alreadyj cars at the lobby at time
t = 0, the first j passengers will not wait at all — each
will immediately board a waiting car and ride up, with
little or no waiting time. The significant but speculative
savings in this scenario must be balanced against the real
cost of not using those cars to service known passengers
above the lobby. In order to quantify these savings, we
must accurately model the behavior of elevator cars at the
lobby.

3 A SEMI-MARKOV SYSTEM MODEL

In order to correctly estimate the waiting times of lobby
passengers given the actual behavior of cars when they find
nobody waiting at the lobby, we employ a semi-Markov
chain whose states and transitions describe the behavior of
landing lobby cars in response to passenger traffic at the
lobby.

A semi-Markov chain consists formally of a finite number
of states Si , i = 1..NS, average momentary costsr i j ,
expected transition timesτi j , and probabilitiesPi j of the
transitions between each pair of statesSi and Sj , and an
initial distribution π(Si) which specifies the probability
that the system would start in stateSi [Bertsekas,
2000]. Furthermore, each semi-Markov chain contains
an embedded fully-Markov chain evolving in discrete
time, whose cumulative transition costsRi j are defined as
Ri j

.=τi j r i j , and all transitions are assumed to occur within
a unit of time.
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Figure 1: Grid structure for the embedded semi-Markov
chain for a building with four shafts. Rowi of the model
contains all possible states of the system just after cari
has arrived at timeTi and has picked up all passengers that
might have been waiting at the lobby. (Note that the vertical
time axis is not drawn to scale.) Only transitions shown
in bold arrows have non-zero costs; the costs of all other
transitions are zero. Transitions labeled withn+ are taken
whenn or morenew passengers arrive.

The states in the semi-Markov chain used for our problem
are labeled by the triple(i, j,m), wherei is the number of
cars that have yet to arrive at the lobby,j is the number
of cars currently at the lobby waiting for passengers, and
m= C− i− j is the number of cars already departed from
the lobby. Accordingly, we place the states of the semi-
Markov chain in a two-dimensional grid (matrix), whose
elementSim corresponds to state(i, j,m) (figure 1). Row
i of the model matrix contains all possible states of the
system immediately after cari has arrived at timeTi and
has picked up all passengers that might have been waiting
at the lobby at that time.

We will first provide a solution for the generic situation
represented by this model, namely when no cars are present
at the lobby at the current decision time (T1 > 0), and
later extend the solution to the case when some cars are
currently parked at the lobby. For the generic case, the
starting state of the chain is the state(C,0,0), i.e., all C
cars have yet to arrive at the lobby. The terminal states are
those in the bottom row of the model, when allC cars have
already landed, and depending on how many passengers
have arrived in the intervalt ∈ [0,TC], either all cars have
departed with passengers on board (state(0,0,C)), or some
cars are still present at the lobby (states(0, j,C− j) for
somej > 0).

Each state(i, j,m) in the rows above the bottom one
(i > 0), where j = C− i −m, can transition to two or
more successor states, depending on exactly how many
new lobby passengers would arrive during the time interval
t ∈ [Ti ,Ti+1]. For example, the chain would transition from
state(4,0,0) to state(3,1,0) only if no new passengers
arrive by timeT1, and will transition to state(3,0,1) if
one or more passengers arrive by that time. Each of



the transitions in figure1 is labeled with the number of
passengers that should arrive if this transition is to be taken.

The time to complete each transition is readily determined
to be the interval∆Ti = Ti −Ti−1 between two car arrivals.
The probability of each transition is also easy to compute,
since it is equal to the probability that a particular number
of people would arrive within a fixed interval from a
Poisson process with arrival rateλ. Thus, the probability
p(x) that exactlyx people would arrive in time∆Ti is
p(x) = (λ∆Ti)xe−λ∆Ti /x!. For transitions labeled with an
exact number of arriving passengers, this formula can be
used directly. For transitions labeled withn+, meaning
that they are taken whenn or more new passengers arrive,
the probability of the transition is the complement to one
of the sum of the probabilities of all remaining outgoing
transitions from this state:p(n+) = 1−∑n−1

x=0 p(x).

Computing the cost of transitions labeled with an exact
number of passengers is trivial: Since the number of
arriving passengers is less than or equal to the number of
cars available at the lobby, none of these passengers would
have to wait and the cost of the corresponding transitions is
zero. Computing the cost of the last (rightmost) transition
from each state, shown in bold in figure1, however, is quite
involved. Such a transition corresponds to the case whenn
or more people would arrive at the lobby, while onlyn−1
cars are present there. The computation has to account for
the fact that ifx new passengers arrive, andx≥ n, the first
n− 1 of them would each take a car and depart without
waiting, and only the remainingx− n+ 1 people would
have to wait.

Figure1 shows that for any stateSim of the grid, as defined
above, andj = C− i −m, the transition shown in bold
is taken when more thanj people arrive, i.e.,n = j − 1.
Hence, if that transition is taken andx new passengers
arrive, only the lastx− j of them would have to wait. In
other words, ifx passengers have appeared within some
time t, the differential (momentary) costr imat that time
would bex− j.

Since such a transition covers the cases when some number
of passengers greater thanj would appear, and this number
could theoretically be arbitrarily large even in a finite
time interval, the expected cost of the transition would
be a weighted sum over all possible numbers of arrivals
x, from j + 1 to infinity, and the weights would be the
probabilities thatx arrivals would occur, as given by the
Poisson distribution. In addition, the differential costs at
time t should be discounted by a factor of exp(−βt), as
discussed previously. This reasoning yields the following
expression for the expected discounted cumulative waiting
time Rβ

im of lobby passengers during the last transition out
of stateSim, with j = C− i−m:

Rβ
im =

TC−i+1∫
TC−i

e−βt
∞

∑
x= j+1

[λ(t−TC−i)]xe−λ(t−TC−i)

x!
(x− j)dt. (4)

After a change of integration variables, simplification, and
splitting of the integral into two parts according to the two
components of the differencex− j, the expression for the
cost evaluates toRβ

im = e−βTC−i [F(∆TC−i+1)−F(0)], where
we make use of the function

F(t) =
j

∑
x=0

λxe−(λ+β)t(x− j)
x

∑
l=0

tx−l

(x− l)!(λ+β)l+1

+
(β j−βλt−λ)e−βt

β2 +c0 (5)

for some arbitrary, but fixed integration constantc0, which
we set to zero for computational convenience. Certainly,
the above function is valid only when at least some
discounting is used (β > 0); whenβ = 0, the cost evaluates
to

R0
im = G(∆TC−i+1)−G(0), (6)

for

G(t) =
j

∑
x=0

λxe−λt(x− j)
x

∑
l=0

tx−l

(x− l)!λl+1 +
λ
2

t2− jt +c0.

(7)

Once all costs and probabilities of the semi-Markov model
have been computed as described above, the cumulative
cost (wait) incurred by the system if it starts in any of
the model states can be computed efficiently by means of
dynamic programming, starting from the bottom row of the
model and working upwards. Since the states in the bottom
row are terminal and mark the end of the landing pattern,
we set their costs-to-go to zero, i.e., we are not interested
in the amount of passenger wait accumulated after the last
landing.

Once the costs-to-go of all states are known, we can read
off the cumulative waiting time for the whole landing
pattern T from the initial state of the model. In the
generic case, when no cars are present at the lobby at
time t = 0, the initial state is always(C,0,0). The special
case whenl cars are present at the lobby at timet = 0
can be handled just as easily — in this case, the starting
state is(C− l , l ,0), and the expected discounted cumulative
wait for the whole landing pattern is the cost-to-go of this
starting state (SC−l ,0). This eliminates the need to handle
this special case separately from the generic one.

4 COMBINING ESTIMATES

The algorithm described above provides estimatesVβ
i

.=
Vβ(T i) of the expected cumulative discounted waiting



time of future lobby passengers, based on each of theC
landing patternsT i resulting from the decision to assign
the current hall call to cari, i = 1..C. Simultaneously, the
ESA-DP algorithm [Nikovski and Brand, 2003] gives exact
estimatesWi of the cumulative non-discounted waiting time
of all existingpassengers of all cars, including the one(s)
that signaled the current hall call, if this call is assigned to
car i, i = 1..C. In order to arrive at an optimal decision
balancing the wait of both existing and future passengers,
the two sets of valuesVβ

i andWi have to be combined in an
appropriate manner.

There are significant differences between these two mea-
sures: The cumulative waiting time of existing passengers
Wi is not discounted, while the cumulative waiting time of
future passengers is discounted. Furthermore, the objective
of the scheduling algorithm is to minimize theaverage
waiting time, and not thecumulativewaiting time over
some interval — the two measures are interchangeable for
the purposes of optimization only when the time intervals
for all possible decisions are equal. Since this is not the
case (in general, the landing patterns for different cars
do not have the same duration), the scheduling algorithm
would have to obtain average waiting times from their
cumulative counterparts.

Obtaining the average waiting time of existing passengers
Wi from the cumulative waiting timeWi is trivial — the
numberN of currently waiting passengers is always known
by the controller and does not depend on the candidate car
numberi, so Wi = Wi/N. On the other hand, obtaining
the average waiting time of future passengersV i from the
cumulative discounted waiting timeVβ

i over the duration of
a landing pattern is not as obvious. The durationTC of the
landing pattern is known, and if the arrival rate at the lobby
is λ, the expected number of arrivals withinTC time units is
λTC. However, dividingVi by λTC is meaningless, because
Vi has been discounted at a discount rateβ.

Instead, we can think of the discount factor exp(−βt) as
an averaging weight for timet. If n(t) is the expected
momentary number of people waiting at timet as reflected
in the costs of the Markov model,

Vβ
i =

∫ TC

0
e−βtn(t)dt (8)

has the meaning of expectedcumulativeweighted number
of people waiting during the interval[0,TC]. Therefore the
quantity

n =
∫ TC

0
e−βtn(t)dt/

∫ TC

0
e−βtdt (9)

is the expectedaveragenumber of waiting people within
this interval, properly normalized by the sum (integral)
of all weight factors. Furthermore, Little’s law specifies
that n = λV i [Cassandras and Lafortune, 1999], which
finally yields the time-normalized expected wait of future

passengers:
V i = Vβ

i β/(λ−λe−βt). (10)

Having obtained comparable estimatesWi andV i of the
waiting times of existing and future passengers, they have
to be combined into a single performance criterion, for
example by means of a single weight 0≤ α ≤ 1, such that
the performance criterion would beαWi +(1−α)V i . The
balance between present and future waits depends on how
quickly the system can free itself of present constraints
by delivering passengers. Thus the optimal value ofα
is ultimately an empirical question, depending mostly on
the physical performance of the elevator system. In our
experiments, we found that values ofα within the interval
[0.1,0.3] stably produced the best results, regardless of the
height of the building and number of shafts.

The resulting algorithm, which uses a weighted average of
ESA-DP’s estimatesWi and the look-ahead estimatesV i ,
will be calledESA-DP-LA (ESA-DP with Look-Ahead). It is
invoked at each passenger’s arrival, and its only parameter
is the current arrival rateλ, of which empirical estimates
are computed and maintained in most modern elevator
scheduling systems [Amano and Masude, 2002]. The
complexity of evaluating the look-ahead estimatesV i is
O(C2), and since the number of carsC is always small,
the computational time for producing these estimates is
negligible with respect to that necessary for computing
the expected waits of current passengersWi and expected
landed patternsT i by means of the originalESA-DP

algorithm.

5 EXPERIMENTS

TheESA-DP-LA algorithm was compared to a conventional
method for supervisory group control in a detailed
simulator. The conventional controller’s basic strategy is to
identify a likely path for each car given its commitments,
then make a new passenger-to-car assignment that
minimizes the round-trip time of all cars along their
likely itineraries. Recently fielded systems by a number
of market-leading manufacturers generally operate on the
same principle [Barney, 2003], although the matter is partly
shrouded by trade secrets.

The algorithms were tested on various buildings with
height of 8, 15, 20, and 30 floors, served by either 3, 4,
5, 6, 7, or 8 elevator shafts, whose cars were moving at a
speed of 3 m/s. Each floor in these buildings was 4m tall,
except for the lobby, which was 5m tall.

Each trial consists of a 1 hour simulation with passenger
traffic of randomly generated traffic, using a unique random
seed. Both algorithms see the same exact traffic. The
performance of the two algorithms was tested under arrival
rates ranging from 100 arrivals per hour up to the point
where average waiting time exceeded one minute. Such a
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Figure 2: Waiting times of theESA-DP-LA scheduler
plotted against waiting times of the conventional scheduler
in identical scenarios, in seconds. Each dot represents an
average over 50 hours of simulation in a specific building
type and arrival rate. Dots below the diagonal represent
cases whenESA-DP-LA achieves lower waiting time than
the conventional scheduler, and vice versa for dots above
the diagonal. The right axis (speed-up) shows percentage
reduction in waiting times.

point is reached at different rates for different buildings and
number of shafts in the elevator group.

The experiments explored the case of mixed up-peak
traffic. In office buildings this is the most demanding traffic
regime, combining maximal arrival rates and uncertainty in
passenger destinations. Most (80%) of the traffic originated
at the lobby and was directed approximately evenly to the
upper floors, while the remaining 20% of the traffic was
between floors other than the lobby. The results are plotted
in figure 2, and indicate that the algorithm significantly
reduces waiting time with respect to the conventional
algorithm, with savings in the range of 5%-55%.

As noted, theESA-DP-LA algorithm is parametrized by the
mixing coefficientα and the discounting rateβ. Their
values were determined experimentally for each building
type in “fitting trials” generated from one set of random
seeds. We took care to ensure that the “test trials” graphed
in figure 2 are generated from a different set of seeds. In
general, the performance ofESA-DP-LA on the two sets of
seeds is similar—average wait times differ by roughly one
second. Performance is also robust to±50% changes inα
andβ, but larger changes can add more than 10 seconds to
the averageESA-DP-LA wait time.

This robustness is illustrated in figure3 for one specific
building (15 floors and 6 shafts). The graph in figure3
depicts the experimental dependency of passenger waiting
times on the value of the discounting parameterβ, for
a fixed value of the mixing paramterα = 0.2, and two

separate sets of 49 random-number seeds. Overall, for both
sets, the minimum waiting times tend to be achieved in the
same specific interval 0.015< β < 0.025. Values much
less thanβ = 0.015 clearly result in poor performance —
if too little or no discounting is used, waiting times can
increase by up to 7 seconds for this particular building,
and by more for other buildings. This can be attributed
to the relatively fast rate at which landing-pattern estimates
become imprecise. When larger discounting rates are used
(β > 0.025), performance worsens as well, but at a slower
rate. (Ultimately, for very large values of the discounting
parameter, e.g.β > 2, the decisions ofESA-DP-LA become
identical to those ofESA-DP.) This shows that it is safer to
err in the direction of more discounting than in the direction
of less discounting.

Figure3 also shows that, in general, it is not possible to find
experimentally the exact “best” value for the discounting
parameter. The optimization surface is fairly noisy even
when relatively many random-number seeds are used, and
gradient-descent search is very hard to apply. Furthermore,
waiting times between fitting and testing trials differ by
approximately one second, so it is not feasible to achieve
better accuracy than that. What is important in practical
terms is that this residual variation is much smaller than the
overall improvements in waiting times achieved byESA-
DP-LA with respect toESA-DP. This effect is shown is
Figure 4, where waiting times ofESA-DP-LA are plotted
vs. those ofESA-DP. Improvements are smaller than
when compared to a conventional scheduler, reflecting
the advantageESA-DP already had with respect to the
conventional algorithms, but they are still very significant.
More importantly, these improvements can be attributed
only to the look-ahead policy.

It is also instructive to interpret the experimentally obtained
value for the discounting parameterβ as a measure of how
far into the future the scheduler looks ahead. Sinceτ .= 1/β
is the time when future waits are discountede times, the
value ofτ can be assumed to be the effective horizon of the
scheduler. The interval 0.015< β < 0.025 corresponds to
horizon of 40< τ < 67 seconds, which is on the order of
one round trip of an elevator car. This is consistent with
our expectation that once a car initially at the lobby has
been able to complete its round trip and return to the lobby,
the actual landing pattern from then on is very different
from our estimates and they should not be relied upon.
Furthermore, we can compare our experimental optimal
discounting rate with that used by [Crites and Barto, 1998].
They usedβ = 0.01, or equivalentlyτ = 100 seconds —
although on the same order as our results, an effective
horizon of 100 seconds is probably too long for all but the
tallest buildings.

Elevator performance in up-peak traffic typically deter-
mines the number of shafts a building will need. Using
standard guidelines for elevatoring a building according



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
30

31

32

33

34

35

36

37

38

39

β

w
ai

t

1−48
101−149

Figure 3: Waiting times of theESA-DP-LA scheduler
plotted against the discount parameterβ, for a fixed mixing
coefficientα = 0.2, in a 15 floor, 6 shaft building,λ = 2500.
Average values for two sets of 49 random seeds are shown.
Both sets show a general minimum in the interval 0.015<
β < 0.025, although the dependency is very noisy locally.

to the waiting times the system should deliver [Barney,
2003], we estimate that if the industry shifted from current
controller technologies toESA-DP-LA , 10-15% of all new
mid- and high-rise office buildings could be built with
one less shaft than currently recommendedand provide
superior service.

6 SUMMARY

This paper presented an algorithm for approximate
estimation of the waiting times of future lobby passengers
for each possible assignment available to a scheduling
algorithm. We combine an estimator of elevator landing
times and a semi-Markov model of overall system behavior
to compute the expected waits of future passengers arriving
at the lobby. This estimate complements the estimates
for the waiting time of passengers already known to
the system, and allows the scheduler to make a rational
assignment based on the balance between waiting times of
existing and future passengers. The resulting scheduling
algorithm achieves large improvements in average waiting
time of passengers — sometimes halving it or better — and
creates real possibilities for reducing the number of shafts
required for properly elevatoring a building.
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