
MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Fast online SVD revisions for lightweight
recommender systems

Matthew Brand

TR-2003-14 March 2003

Abstract

The singular value decomposition (SVD) is fundamental to many data modeling/mining algo-
rithms, but SVD algorithms typically have quadratic complexity and require random access to
complete data sets. This is problematic in most data mining settings. We detail a family of
sequential update rules for adding data to a “thin” SVD data model, revising or removing data
already incorporated into the model, and adjusting the model when the data-generating pro-
cess exhibits nonstationarity. We also leverage the SVD to estimate the most probable com-
pletion of incomplete data. We use these methods to model data streams describing tables of
consumer/product ratings, where fragments of rows and columns arrive in random order and in-
dividual table entries are arbitrarily added, revised, or retracted at any time. These purely online
rules have very low time complexity and require a data stream cache no larger than a single
user’s ratings. We demonstrate this scheme in an interactive graphical movie recommender that
predicts and displays ratings/rankings of thousands of movie titles in real-time as a user adjusts
ratings of a small arbitrary set of probe movies. The system “learns” as it is used by revising the
SVD in response to user ratings. Users can asynchronously join, add ratings, add movies, revise
ratings, get recommendations, and delete themselves from the model.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in
part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of Mitsubishi Electric Information Technology Center America; an
acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Information
Technology Center America. All rights reserved.

Copyright c©Mitsubishi Electric Information Technology Center America, 2003
201 Broadway, Cambridge, Massachusetts 02139

Presented at SDM, May 2003. Appears in Proceedings, SIAM 3rd International Conference on Data Mining,
2003.

Fast online SVD revisions for lightweight recommender systems

Matthew Brand∗

Abstract

The singular value decomposition (SVD) is fundamental to
many data modeling/mining algorithms, butSVD algorithms
typically have quadratic complexity and require random
access to complete data sets. This is problematic in most
data mining settings. We detail a family of sequential
update rules for adding data to a “thin”SVD data model,
revising or removing data already incorporated into the
model, and adjusting the model when the data-generating
process exhibits nonstationarity. We also leverage theSVD to
estimate the most probable completion of incomplete data.
We use these methods to model data streams describing
tables of consumer×product ratings, where fragments of
rows and columns arrive in random order and individual
table entries are arbitrarily added, revised, or retracted at
any time. These purely online rules have very low time
complexity and require a data stream cache no larger than
a single user’s ratings. We demonstrate this scheme in
an interactive graphical movie recommender that predicts
and displays ratings/rankings of thousands of movie titles
in real-time as a user adjusts ratings of a small arbitrary
set of probe movies. The system “learns” as it is used
by revising theSVD in response to user ratings. Users
can asynchronously join, add ratings, add movies, revise
ratings, get recommendations, and delete themselves from
the model.

Keywords: collaborative filtering; singular value
decomposition; online updating; real-time recom-
mending; incomplete data.

1 The problem

Recommender systems use a small sample of customer pref-
erences to predict likes and dislikes over a much wider set
of products. The prediction function is estimated from a
tabular database of customer×product scores. In this pa-
per, we will focus on movie ratings. It is not unusual for
these tables to be enormous (O(103)−O(107) rows and
columns) but mostly empty, with most scores unknown. In
fielded systems, the table is constantly changing, with rows,
columns, and individual scores constantly being added, re-
vised, or censored. These edits may arrive asynchronously
from many distributed sources. Efficient methods for ware-

∗Mitsubishi Electric Research Labs, Cambridge, Massachusetts, USA

housing, updating, and accessing such tables remain active
issues in database and datastructure research. Estimating a
reasonably efficient, compact, and accurate prediction func-
tion is an even harder problem that has attracted much atten-
tion in the data mining and machine learning communities.
Nearest-neighbor methods, which effectively match against
raw data, have remained popular and effective despite high
search costs and limited predictivity. More sophisticated
prediction methods are often defeated by very high data di-
mensionality, high computational costs of model fitting, and
the inability to adapt to new or retracted data. Moreover,
with very sparsely populated tables, the data is often insuffi-
cient to support accurate parameter estimates in these mod-
els. Typically a dense subset of the table is constructed from
the responses of a focus group, and the prediction function is
extrapolated from that.

The very high dimensionality of this and other data
mining problems has motivated explorations of multilinear
models such as the thin singular value decomposition (thin
SVD), both as a compressed representation of the data and
as a basis for predictions via linear regression. Linear
regression models generally have lower sample complexity
per parameter than nonlinear and nonparametric models, and
can thus be expected to show better generalization. The
SVD and related eigenvalue decomposition (EVD) lie at the
heart of thousands of data-analysis algorithms, where they
are used for dimensionality reduction, noise suppression,
clustering, factoring, and model-fitting. Several well-known
recommender systems are based on theSVD/EVD [5, 14, 17,
11]. Unfortunately, computing anSVD of a very large dataset
is an impractical affair, requiring complete data, run-time
quadratic in the dataset size, and in-memory storage of the
entire dataset. Many algorithms have been proposed to deal
with some but not all of these problems. Adapting to new
or retracted data is also an issue, though it is well understood
how to append [6, 16, 15, 22, 3] or delete [21] entire columns
or rows, provided that they are complete.

In this paper we contemplate the followingpurely online
data mining scenario: Data arrives asynchronously (in no
particular order) asfragmentsof rows and columns. Rows,
columns, and fragments thereof may be added, changed, or
retracted in any order. The ultimate size of the data matrix
is unknown. The collected data will typically be very sparse,
but missing values cannot be presumed to be zeros. The task
is to compute the best running estimate of a thin rank-r SVD

http://www.merl.com/people/brand/

of the true data matrix, without any storage or caching of
incoming data, and make recommendations (from predicted
missing values) from thisSVD on demand.

To this end we develop an exact rank-1 update that
provides very fast additions, deletions, and element-wise
edits—fast enough for linear-time construction of the whole
SVD. When faced with missing data, we use an imputa-
tive update that maximizes the probability of correct gen-
eralization. We demonstrate experimentally that these meth-
ods are much faster and at least as predictive as offlineSVD

approaches reported in the data mining literature. The rank-
1 updates are the main theoretical contribution of this paper;
the main practical contribution is a demonstration of their use
in a full-scale movie recommending system with a graphical
user interface in which users move sliders to rate movies and
see all other movies re-rated and ranked with millisecond re-
sponse times. The system “learns” from user’s query ratings,
again, in real-time.

2 The SVD in data mining

The singular value decomposition factors a matrixX into two
orthogonal matricesU,V and a diagonal matrixS .= diag(s),
such thatUSV> = X and U>XV = S. The elements of
s are called singular values and the columns ofU,V are
called the left and right singular vectors, respectively. If we
sign and arrange these matrices such that the values on the
diagonal ofS are nonnegative and in descending order and
the first nonzero element in each column ofU is also positive,
then theSVD is unique (ignoring any zero singular values).
The SVD has the optimal truncation property: If we discard
all but ther largest singular values and the corresponding
singular vectors, the product of the resulting thinned matrices
U′S′V′> ≈ X is the best rank-r approximation ofX in the
least-squares sense. This is called athin SVD. For this
reason, the matrixU′>X = S′V′>—the projection ofX onto
r orthogonal axes specified by the columns ofU′—is an
excellent reduced-dimension representation of the data.

If X is a tabulation of consumer×product affinity scores,
then the subspace spanned by the columns ofU′ can be
interpreted as ar-dimensionalconsumer taste space, where
individuals are located according to the similarity of their
tastes. The relationship between a user’s ratings (represented
as a column vectorc) and his/her taste-space locationp is
simply p = U′>c andc≈ U′p, where the approximation is
squared-error-optimal for anr-dimensional model. Ifc is the
nth column in the originalX, thenp is the nth row in V′S′.
If c is incomplete, various imputation methods (discussed
below) can estimatep and thence a completion ofc; this is
the basis ofSVD-based recommending. One can also identify
people with similar tastes by their Euclidean distant top in
taste space (e.g., [11, 17]). Similarly, theproduct taste space
V′ contains products arranged by what sorts of people like
them. Often these spaces are useful for subsequent analyses

such as clustering, visualization, market segmentation, and
pricing of new products.

TheSVD is most informative when the data has first been
translated so that it is centered on the origin. In that case,
the SVD can be interpreted as a Gaussian covariance model
of the data that captures correlations between consumer’s
tastes. Centering allows proper Bayesian inference about
typicality and missing values, as well as statistical tests to
verify Gaussianity.

Centering aside, the main practical impediment to us-
ing a thin SVD is the cost of computing it. State-of-the-art
methods are typically based on Lanczos or Ritz-Raleigh iter-
ations. Run-time can can be linear in the number of nonzero
elements in the data, but these methods require multiple
passes through the entire dataset to converge, and are not
suitable in online settings. SequentialSVD updating algo-
rithms have focussed on modifying a knownSVD of dataX to
obtain anSVD of the data with an appended column ([X,c]).
We recently introduced an exact (closed-form) update rule
[3] that can build a rank-r SVD of a low rankp× q matrix
through sequential updates in linear time1 (O(pqr) time for
the entire matrix), making a single pass through the columns
of the matrix, meaning that the data need not be stored. It can
be shown that the method introduced in this paper contains
this as a special case and inherits its very favorable perfor-
mance. The rule given here generalizes to provide the re-
maining operations needed for a true online system: down-
dating (removing rows and columns) revising (changing se-
lected values in a row or column), and recentering. In an
online setting, keeping theSVD model centered is an acute
problem, because the mean of the data is constantly drifting,
partly due to sample variation and, more importantly, due to
long-run nonstationarities such as changing market dynam-
ics and drifting tastes in a population.

3 Background

SVD updating has a literature spread over three decades
[7, 6, 2, 10, 1, 8, 15, 22, 3] and is generally based on
iterative Lanczos or Ritz-Raleigh methods, or relationships
betweenSVDs in a subspace and the full dataSVD. The last
category includes some very fast methods, but they are often
approximate [1] and/or vulnerable to loss of orthogonality
[22, 8, 15]. For example: Berryet alia [1] propose to project
the problem into a previously estimated low-rank subspace,
but the resulting updates ignore any component of new data
that lies outside that subspace. Levy and Lindenman [15]
show that one can incrementally compute the left singular
vectors inO(pqr2) time; if p,q, andr are known in advance

1For ap×q matrix X and desiredSVD of rankr ≤O(
√

min(p,q)), our
updates perform the entireSVD in O(pqr) time–purely linear in the size of
the inputs and outputs. Other updating algorithms are quadratic in the size
of the outputs and/or must make multiple passes through the data and/or
must be iterated to convergence.

operation known desired a b>

update US[V>,0] = [X,0] U′S′V′> = [X,c] c [0, · · · ,0,1]
downdate USV> = [X,c] U′S′V′> = X −c [0, · · · ,0,1]

revise USV> = [X,c] U′S′V′> = [X,d] d−c [0, · · · ,0,1]
recenter USV> = X U′S′V′> = X−m1> −m 1> .= [1, · · · ,1]

Table 1: Database operations expressed as rank-1 modifications of anSVD USV> = X to giveU′S′V′> = X +ab>.

and p � q � r, then the expected complexity falls to
O(pqr). However, orthogonality can decay quickly and
results have only been reported for matrices having a few
hundred columns.

None of this literature contemplates missing values,
except insofar as they can be treated as zeros (e.g., [2]). In
batch-SVD contexts, missing values are usually handled via
subspace imputation, using an expectation-maximization-
like procedure: Perform anSVD of all complete columns,
regress incomplete columns against theSVD to estimate
missing values, then re-factor and re-impute the completed
data until a fixpoint is reached (e.g., [20]). This is extremely
slow (quartic time) and only works if very few values are
missing. It has the further demerit that the imputation does
not minimize effective rank. Other heuristics simply fill
missing values with row- or column-means [17].

In the special case where a matrixM is nearly
dense, its normalized scatter matrixΣm,n

.= 〈M i,mM i,n〉i
(〈·〉i=expectation w.r.t. known values in rowi) may be fully
dense due to fill-in. A popular heuristic interpretsΣ’s eigen-
vectors asM ’s right singular vectors [13]. It can be shown
that this is strictly incorrect; there may not be any imputa-
tion of the missing values that is consistent withΣ’s eigen-
vectors2. For the very sparse problems that we will consider,
this approach is mooted by the fact thatΣ is also incomplete
and its eigenvectors undefined.

4 Modifying the SVD

Updating, downdating, revising, and recentering are all in-
stances of rank-1 modifications: Given column vectorsa,b
and a knownSVD USV> = X, what is theSVD of X + ab>?
Table1 illustrates all cases. Typicallyb is a binary vector
indicating which columns should be modified, anda is de-
rived from contains update or downdate values (c), revision
values (d), or a mean value (m) which should be subtracted

2Evidently this has been overlooked in the literature, so we offer a short
proof: Take a dense matrixM with one element set to zero, and compute
its normalized scatter matrix as if the element were missing. The difference
between the normalized scatter andM ’s covariance will be zeroes except for
one diagonal element and the row and column containing it. If there is an
imputation consistent with the scatter, then the off-diagonal elements of this
row (or column) should be the product of the imputed value and the other
values in the vector. However, the corresponding elements of the scatter
matrix are computed without regard to other values of the vector, and so no
such relationship holds.

from all columns. These operations are summarized in ta-
ble1. In appendixA we show how any such low-rank modi-
fication can be solved via operations in the low-dimensional
subspaces specified by the knownSVD. The basic strategy
is that thenew SVD can be expressed as a product of the
old subspaces (slightly augmented) and a not-quite diagonal
core matrix, which can be rediagonalized by left and a right
rotation. These are small-matrix operations, and thus fast.
Applying the opposite rotations to the augmented old sub-
spaces gives a newSVD. Even this step can be made fast
by accumulating the small rotations over many updates in-
stead of applying them to the large subspace matrices. Thus
for a rank-r thin SVD, the dominant computations scale inr,
which is typically very small relative to the size of the data.

It can be shown that the special case of the rank-1 rule
giving SVD updates is algebraically equivalent to (and sim-
pler than) an update rule we recently introduced in a related
computer vision paper [3]. There we showed that through
careful management of the computation, the update rule can
build an exactSVD of a p× q rank-r matrix in purely lin-
earO(pqr) time when the rank is small relative to the size,
specifically whenr ∼O(

√
min(p,q)). This is borne out em-

pirically in figure 1, where a new implementation of our
method is compared against a commercial Lanczos imple-
mentation. When the matrix has rank> r, our method (and
any thinSVD algorithm) necessarily gives an approximation:
Each update will increase the rank of theSVD by 1, until
a user-specified ceiling is reached. At this point the update
ceases being exact because the last singular value will have
to be dropped, giving the optimal fixed-rank approximation.
Typically this singular value has tiny mass and the approxi-
mation errors will cancel out over many updates, so that in
practise our method often has numerical accuracy compet-
itive with Lanczos methods [3]. Because our method is so
fast, one can always build a rank-2r model and use the rank-r
submodel, which is typically accurate to machine precision.
It should also be noted that when mining datasets of elicited
responses such as user ratings, the values themselves are no-
toriously unreliable (users show poor repeatability, with rat-
ings wandering up to 40% of the scale from day to day3), so
a good low-rank approximation of the data has higher prob-
ability of generalization than a medium-rank model that per-
fectly reconstructs the data.

3Joseph Konstan, personal communication.

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

rank

se
co

nd
s

Thin SVD of 1000x1000 matrix

incremental SVD
batch Lanczos SVD
(truncated batch SVD takes 213 seconds)

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

rank

tim
e

(s
ec

on
ds

)

Thin SVD of 3000x3000 random matrix

Incremental SVD (online method)
Lanczos SVD (batch method)

Figure 1: Run-time of sequentialSVD updating (blue solid
line) versus batch Lanczos (green dashed line), as a func-
tion of the number of singular vector/value triplets computed
from a random matrix. Each datapoint represents the aver-
age of 100 trials. In each trial, both algorithms correctly
factor the same dense matrix. The sequential update shows
clear linear scaling and speed advantages. The experiment
graphed at left employed low-rank matrices; at right, full-
rank matrices having reasonable low-rank approximations.
Our method shows similar speed advantages over other up-
dating algorithms (e.g., [8, 15, 16]), but produces more ac-
curate results. Experiments were performed in Matlab 6 on
an AlphaServer with a 600MHzCPU and 10G RAM.

We stress thatall of the operations introduced in this
paper—not just the update—have low computational com-
plexity and work in a pure streaming-data setting, with no
data warehousing and low storage overhead. The updates re-
quire only the currentSVD matrices, the index of the current
user or product, and the vector containing the new ratings.
Even for data tables with thousands of rows and columns, the
updates can keep everything on theCPU’s on-board memory
cache, making for very fast performance.

5 Imputation and prediction

Ratings tables are typically incomplete; most entries are
unknown. Missing values present a serious problem for data
mining algorithms based on matrix factorizations because
the decompositions are not uniquely defined: Even if a
single value is missing, there is a continuous orbit ofSVDs
consistent with the remaining known entries. The imputation
problem—how to predict missing values—plays a key role in
computing theSVD and in making recommendations.

The literature is rich with proposed imputation schemes.
Most perform a smallSVD of a submatrix that is dense,
regress against theSVD to impute missing values in some
adjoining part of the submatrix, perform a largerSVD of
the dense and imputed values, and repeat until all missing
values are filled in. This can have quartic complexity, and
the result is very sensitive to the choice of regression method
and order of imputations. Other methods are based upon
the expectation-maximization algorithm and have similar
complexity and sensitivity to initial conditions.

Approximation theory teaches that when learning in an

online setting with a finite memory, some sensitivity to data
ordering is unavoidable. The strategy to minimize this sen-
sitivity in sequential updating algorithms is to select updates
that have the highest probability of correctly generalizing,
usually by controlling the complexity of the model while
maximizing the probability of the data.

Our approach exploits the fact that the (squared) sin-
gular values and left singular vectors comprise anEVD of
the data’s covariance matrix. Under the generic assumption
that the data is normally but anisotropically distributed, the
SVD can be interpreted as a Gaussian model of the data den-
sity, andSVD updating as sequential updating of that density.
Adding a complete vector is equivalent to updating the den-
sity with a point; adding an incomplete vector is equivalent
to updating the density with a subspace whose axes corre-
spond to the unknown elements of the vector. If theSVD is
thin, then the imputed point may be further constrained to
lie in the intersection of the data subspace and the missing
value subspace. Naive imputation schemes such as linear re-
gression (e.g., [12, 17]) essentially choose the point in the
missing value subspace or intersection subspace that is clos-
est to the origin, essentially assuming that some unknowns
are zero-valued. Such imputations are not likely to be true,
and generally reduce the predictivity of the model if incor-
porated into theSVD.

Clearly imputation requires some prior or learned
knowledge. In appendixB we introduce a fast imputative
update for use when some of the values in a ratings vector
c are unknown but assumed to lie within a known range—
a commonplace in ratings data. The solution is exact in the
sense that the updatedSVD will reconstruct a matrixX whose
covariance statistics exactly match those obtained by inte-
grating over the uncertain values with a uniform prior. How-
ever, the bounds only add information if they are asymmet-
ric about zero; otherwise we find that this imputative scheme
actually slightly underperforms a probabilistic scheme intro-
duced in [3] and modified here for data mining.

We suggest that that imputation should be informed by
the density of previously processed data. It was shown in [3]
that if one considers all points in the intersection subspace
according to their likelihood vis-a-vis the data density with
a uniform prior, then the posterior mean estimate of the
missing values is given by choosing the point that lies the
fewest standard deviations from the origin. This is illustrated
in figure 2. The calculation is quite simple and is given in
appendixB.1. For SVD updating the full imputation is not
needed, just the subspace coordinates of the imputed point.
It was also shown that this imputation greedily minimizes the
growth of the rank of theSVD, which is the complexity of
the model [3]. This imputation was developed to predict the
location of occluded features in computer vision problems,
and happens to give good results in data mining tasks as well.

The imputed ordinates are essentially predictions of how

Figure 2: Illustration of imputation in 3-space viewed from side (left) and top (right). TheSVD currently specifies a 2-
dimensional subspace indicated by the blue (tilted) plane; its axes (eigenvectors) are indicated by the small arrows and its
1 standard deviation probability isocontour is indicated by the green ellipse. The incomplete vectorc = [?,?,2] is depicted
by the red (level) plane. The intersection of the data subspace and the completion subspace is the 1D space depicted as a
red line. On that line, the yellow point is the most probable imputation, having smallest Mahalonobis (but not Euclidean)
distance to the density peak at the origin.

a consumer would rate all products, equivalent to a linear
mix of the ratings of all other consumers, weighted by the
correlations between their ratings and the few known ratings
of the current consumer. Thus the same machinery is used
for imputing and recommending.

In moving from continuous-valued computer vision
problems to bounded-value data mining problems, we have
noted a potential pathology of the of density-based imputa-
tion: It is possible (though rare) that the intersection space is
very far from the origin, in which case a large but improba-
ble vector will be added to theSVD. If it is known a priori
that such vectors are impossible (e.g., values are bounded
to lie in some small range), then such constraints can often
be expressed as a Gaussian prior and amaximum a posterior
imputation made via least-squares methods. In the context of
a thinSVD, this is equivalent to assuming that all of the trun-
cated singular values haveε > 0 mass instead of zero mass
(equivalent to the Bayesian formulation of principal compo-
nents analysis; see [19]). In this case the imputed vector will
be much smaller but will lie slightly outside the taste-space,
requiring either an exact rank-1-increasing update or an ap-
proximate fixed-rank update.

6 The bootstrapping problem

The more mass in the singular values, the more constrained
the imputation is by previous inputs, and therefore the better
the estimatedSVD. This poses a problem in the beginning,
when theSVD has almost no mass because the first few users
have rated few items. In our application, users typically rate

less than 1% of all items, so there is little chance than any
item has been rated by two users until many users have used
the system. One way to work around this is to warehouse the
first few hundred submitted ratings, then re-order the rows
and columns of this matrix so that it is dense in one corner.
This can be done by rapid sorting inO(pqlogpq) time. The
SVD can be “grown” out of this corner by sequential updating
with partial rows and columns. When it finally becomes
necessary to impute values (the algorithm has run out of
complete partial rows and columns), these imputations are
reasonably well constrained. This scheme defers imputations
until they can be well constrained by previously incorporated
data. It also enables factorings of extremely sparse datasets.
Figure3 illustrates this method with a synthetic toy problem
and shows that it compares favorably toMatlab’s batch thin
SVD (with column-average imputations) in terms of rank,
log-volume, flop count, and even numeric accuracy. In the
next section we apply it to a real full-scale data-mining
problem.

7 Application to collaborative filtering

The collaborative filtering problem takes an extremely sparse
array of consumer×product scores and asks for predictions
of the missing scores. Sarwaret alia [17] collected a 93.7%
empty matrix containing ratings of 1650 movies on a 1-5
scale by 943 individuals, and split it 80%/20% into training
and test sets. They filled missing elements in the training
matrix with the average rating for each movie, centered the
matrix, then computed a series of thin, sparse LanczosSVDs.

matrix with 75% missing values re−ordered matrix with SVD growth pattern

5 10 15 20
log−volume: 42.5101, FLOPs: 334102

incremental SVD singular values

5 10 15 20
log−volume: 77.4994, FLOPs: 417136

batch SVD singular values

−5

0

5

x 10
−15residuals of incremental SVD

−10

−5

0

5

x 10
−15residuals of batch SVD (imputed columns)

Figure 3: Bootstrapping an imputativeSVD of a mostly unknown matrix. TOP LEFT: A rank-8 20×40 matrix with 75% of
its entries randomly obliterated (set toNaN). Dots indicate entries having values. TOP RIGHT: The matrix is rearranged and
partitioned into partial rows and columns for incrementalSVD. The pattern of bars shows the order of updates. MIDDLE AND

BOTTOM LEFT: IncrementalSVD yields a rank-5 decomposition that reconstructs the surviving data to machine precision.
M IDDLE AND BOTTOM RIGHT: A batch SVD of the matrix with EM-imputed entries requires all 20 singular values to
reconstruct the surviving data to machine precision. Truncating the batchSVD to rank 8 amplifies the residuals by 1014

(not shown). The bottom graphs show how much of the volume of the associated Gaussians is explained by each singular
value/vectors triplet.

They found that a rank-14 basis best predicted the test set
as measured by average absolute error (MAE) and mean-
squared error.

We obtained their data and repeated their procedure with
similar (but not identical) numerical results: The rank-15 ba-
sis was marginally better than their reported result, with an
MAE of 0.7914 and a standard deviation (SD) of σ = 0.9960.
The difference is possibly due to different test/train splits.
We then applied our incremental imputativeSVD to the raw
training dataset and found a 5-dimensional subspace that had
even better prediction accuracy of 0.7910MAE, 1.0811SD

(see figure4). In each of 5 disjoint train/test splits, the incre-
mental algorithm produced a compact 4- or 5- dimensional
basis that predicted at least as well as the best (but much
larger) Lanczos-derived basis. These scores are competi-

tive with published reports of the performance of nearest-
neighbor based systems on the same dataset (see [17]), which
makes the subspace approach appealing because of its lower
overhead for storage, updates, and predictions.

Not surprisingly, an incrementalSVD of the whole
database indicated that the five largest singular values ac-
count for most of the variance in the data. In all cases
the resulting predictor is within 1 rating point of the true
value more than 80% of the time and within 2 points more
than 99% of the time. This is probably more than accurate
enough, as raters often exhibit day-to-day inconsistencies of
1-2 points when asked to rate the same movies on differ-
ent days. The incremental algorithm also has the practical
advantages of being faster (0.5GFLOPs versus 1.8GFLOPs),
and opens the way to fast online updating of theSVD as new

2 4 6 8 10 12 14 16 18

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

m
ea

n
ab

so
lu

te
 e

rr
or

 (
on

 te
st

 s
et

)

basis vectors used (from train set)

Collaborative filtering (matrix completion) prediction accuracy

Lanczos batch SVD (1.8 Gflops)
Incremental SVD (0.5 Gflops)

Figure 4: Prediction error of a held-out test set from thin
SVDs of a training set with 93.7% of all values missing. The
incremental method finds a 5-dimensional basis that bests
the 15-dimensional basis found by the Lanczos method (after
column imputations).

movies or viewers are added to the database. (Collaborative
filtering systems typically require large overnight computa-
tions to incorporate new data.)

7.1 The instant movie recommenderBecause theSVD

basis is small and the computations are lightweight, we
found it practical to implement a real-time interactive collab-
orative filtering system in java, shown in figure5. To query
the system, a user selects a small number of movies by drag-
ging their titles into a rating panel, where each can be rated
by moving a pointer along a sliding scale. Imputed ratings of
all the other movies and a sorted list of recommendations are
updated and displayed in real-time: As the slider moves, slid-
ers next to all other movie titles move. It takes an average of
6 milliseconds to re-rate all movies, so the user experiences
instantaneous feedback. One advantage of instant animated
visual feedback is that the user can see how strongly the pre-
dicted rating of any movie is correlated or anticorrelated with
that of the movie whose rating is currently being varied. Sec-
ond, if the system makes a prediction that the user disagrees
with, she can drag that movie into the rating panel and cor-
rect the system. A few such iterations quickly yields a ro-
bust (overconstrained) estimate of the user’s location in taste
space, leading to improved recommendations and a more in-
formative ratings vector to be incorporated into theSVD. We
find that users naturally engage in this kind of interaction.

When the user is done, her ratings can be sent back to
a central server for immediate updating of theSVD basis.
A user can also obtain a persistent identifier (e.g., her col-
umn index) so that she can come back and review, revise,

or remove her ratings. The demo version pictured in fig-
ure5 combines the recommender and theSVD operations in
a standalone java application;SVD updates average 50 mil-
liseconds. Some advantages of this approach are 1) real-time
interactivity; 2) all of the computation for recommendations
is done on the client’s computer; 3) the basis (SVD) is con-
stantly updated; 4) the user community “grows” the basis by
adding new movies and users.

The recommending engine and interface are lightweight
enough that they could be served as a javascript web-page. It
is even practical to combine them with theSVD update in a
web-served client: Instead of using a central server to update
the basis, users could simply broadcast their ratings to each
other and do autonomous updates. This offers the possibility
of totally decentralized collaborative filtering.

8 Discussion

In this paper we introduced family of rank-1SVD revision
rules and showed that they efficiently allow a thinSVD to
“mimic” database operations on tables of consumer×product
scores: adding, deleting, and revising rows, columns, and
fragments thereof. In addition theSVD can be recentered
as the mean of the data stream drifts. All operations have
low time and storage complexity, and run fast enough for
collaborative filtering and recommending to be a real-time
graphical interaction with the model of communal tastes.
We also introduced a new imputation rule and revised a
highly successful probabilistic imputation rule in light of
constraints on the range of values that can be imputed.

8.1 Changing tastesA particularly interesting issue is
how to handle nonstationarity in online learning systems.
In a fielded system, it is likely that a repeat user will add
new ratings and change old ones. This is accommodated
through revisions and recenterings of theSVD, which are
desirable because tastes change and theSVD should not
be anchored to “stale” ratings. These operations are exact
(iff the table truly has rankr), yielding a model which
gives equal weight to the most recent opinions of all users.
However, if tastes really do change, then older ratings should
be discounted, because the taste subspace is nonstationary
and should be tracked over time. For large-sample processes,
this is properly accommodated by gradually forgetting the
past: In the context of sequentialSVD updating, the singular
values would be made to decay exponentiallyS← λS (0<
λ < 1) on each update so that the weight of experience
(literally, the mass of the singular values) does not grow
to overwhelm the weight of new information (literally, the
norm of a new ratings vector). When and how fast we may
allow singular values to decay is an important question that
we hope to answer in a future paper with the tools of large
deviation theory.

Readers may also be interested in our work on nonlinear

Figure 5: The Instant Movie Recommender. Moving the slider next to any movie in the left panel causes all movies on
the right to be re-rated in real-time. This double image shows how ratings change as the user raises the rating of “Ran.”
In the user community, liking “Ran” is strongly correlated with liking “The Age of Innocence,” anti-correlated with liking
“Air Bud,” and uncorrelated with liking “Alphaville.” Movies on the right can also be sorted by recommendation score in
real-time. The rating set can be changed at any time. When the user is done, her query (ratings) are used to update the basis.

analogues of theSVD, which project the data onto curved
manifolds rather than flat subspaces (e.g., [4]); these are
particularly useful for data visualization.

9 Acknowledgments

Andrey Rakhmanoff ported these algorithms to C. Sergei
Makar, Fred Igo, and Shinsuke Azuma developed the initial
demo into the browser/recommender interface shown in
figure5. GroupLens graciously provided the movie data.

References

[1] M. Berry, S. Dumais, and T. Letsche. Computational meth-
ods for intelligent information access. InProc. Supercomput-
ing’95, 1995.

[2] M. W. Berry. Large scale singular value computations.
International Journal of Supercomputer Applications, 6:13–
49, 1992.

[3] M. Brand. Incremental singular value decomposition of
uncertain data. InProceedings, European Conference on

Computer Vision, Lecture Notes on Computer Science, pages
707–720. Springer-Verlag, 2002.

[4] M. Brand. Charting a manifold. InProc. NIPS-15, 2003.
[5] S. Brin and L. Page. Anatomy of a large-scale hypertextual

web search engine. InProc. 7th Int’l World Wide Web
Conference, 1998.

[6] J. R. Bunch and C. P. Nielsen. Updating the singular value
decomposition.Numer. Math., 31:111–129, 1978.

[7] P. Businger. Updating a singular value decomposition.BIT,
10:376–385, 1970.

[8] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler,
and H. Zhang. An eigenspace update algorithm for image
analysis. Graphical models and image processing: GMIP,
59(5):321–332, 1997.

[9] G. Golub and A. van Loan.Matrix Computations. Johns
Hopkins U. Press, 1996.

[10] M. Gu and S. C. Eisenstat. A stable and fast algorithm
for updating the singular value decomposition. Tech. Re-
port YALEU/DCS/RR-966, Department of Computer Sci-
ence, Yale University, New Haven, CT, 1993.

[11] D. Gupta and K. Goldberg. Jester 2.0: A linear time collabo-
rative filtering algorithm applied to jokes. InProceedings of

the SIGIR. ACM, 1999.
[12] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recom-

mending and evaluating choices in a virtual community of
use. InHuman factors in computing systems Proc. CHI95,
pages 194–201, 1995.

[13] J. Jackson.A user’s guide to principal components. Wiley,
1991.

[14] J. Kleinberg. Authoritative sources in a hyperlinked environ-
ment. InProc. 9th ACM-SIAM Symposium on Discrete Algo-
rithms, 1998.

[15] A. Levy and M. Lindenbaum. Sequential karhunen-loeve
basis extraction and its application to images. Technical
Report CIS9809, Technion, 1998.

[16] M. Moonen, P. van Dooren, and J. Vandewalle. Singular
value decomposition updating algorithm for subspace track-
ing. SIAM Journal on Matrix Analysis and Applications,
13(4):1015–1038, 1992.

[17] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Appli-
cation of dimensionality reduction in recommender system—
a case study. InACM WebKDD 2000 Web Mining for E-
Commerce Workshop. ACM Press, 2000.

[18] G. W. Stewart. An updating algorithm for subspace tracking.
IEEE Trans. Signal Processing, 40:1535–1541, 1992.

[19] M. Tipping and C. Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society, Series B,
21(3):611–622, 1999.

[20] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie,
R. Tibshirani, D. Botstein, and R. B. Altman. Missing value
estimation methods for DNA microarrays.BioInformatics,
17:1–6, 2001.

[21] D. I. Witter and M. W. Berry. Downdating the latent semantic
indexing model for conceptual information retreival.The
Computer Journal, 41(1998), 1998.

[22] H. Zha and H. D. Simon. On updating problems in latent
semantic indexing.SIAM Journal on Scientific Computing,
21(2):782–791), 1999.

A Low-rank modifications

Let Udiag(s)V>
SVDr← X with U>U = V>V = I be a rank-

r thin singular value decomposition (SVD) of matrix X ∈
R p×q. This appendix shows how to updateU,s,V to the
SVD of X + AB>, whereA,B havec columns. The original
matrixX is not needed. Efficient rank-1 updates allow single
columns (or rows) ofX to be revised or deleted without the
entireV (resp.U) matrix.

Let P be an orthogonal basis of(I −UU>)A = A −
UU>A, the component ofA orthogonal toU, as one would
obtain from theQR-decomposition

[U,P]
[

I U>A
0 RA

]
QR← [U,A],(1.1)

which can computed via the modified Gram-Schmidt proce-
dure (MGS) [9, §5.2.8].RA is upper-triangular. Similarly, let
Q be an orthogonal basis ofB−VV>B. Then

[U,P]>(X +AB>)[V,Q](1.2)

=
[

diag(s) 0
0 0

]
+[U,P]>AB>[V,Q](1.3)

=
[

diag(s) 0
0 0

]
+
[

U>A
RA

][
V>B
RB

]>
.(1.4)

The goal is to rediagonalize equation (1.4). Let
U′diag(s′)V′> be the rank-(r +c) SVD of the right-hand side
(RHS) of equation (1.4). Then the rank-r + c update of the
rank-r SVD is

U′′diag(s′′)V′′> .= ([U,P]U′)diag(s′)([V,Q]V′)>(1.5)

= (X +AB>).(1.6)

Note that one never needs the original data matrixX.

A.1 Rank-1 modifications Rank-1 updates offer special
efficiencies: For the updatedSVD of X + ab>, expand the
MGS of equation (1.1) to obtainm .= U>a; p .= a−Um; p

.=√
p>p =

√
a>p; P = p/p and similarlyn .= V>b; q .= b−

Vn; q
.=
√

q>q =
√

b>q; Q = q/q. The rightmost term in
equation (1.4) is then the outer vector product[

U>A
RA

][
V>B
RB

]>
=
[

m
p

][
n
q

]>
.(1.7)

For example, if one wanted to change the first column of
X to y, then b = [1,0,0, ...]>; n> is the first row ofV;
a = y−Udiag(s)n is y minus the first column ofX; m =
U>y−diag(s)n; p′ .= y−U(U>y), etc. To append a column
y to theSVD, append a zero column to the originalSVD by
appending row of zeros toV, then update that column toy.
In this case,n = 0 andq = 1, so equation1.4asks us only to
rediagonalize the broken-arrow matrix[

diag(s) m
0 p

]
,(1.8)

which can be done inO(r2) time [10].
Settingy = 0 effectively downdates theSVD by zeroing

the column selected byb. In this caseRHS equation (1.4)
simplifies to[

diag(s) 0
0 0

]
+
[

U>A
RA

][
V>B
RB

]>
(1.9)

=
[

diag(s) 0
0 0

](
I −
[

n
0

][
n√

1−n>n

]>)
.(1.10)

P is unused, andQ = (b− Vn)/
√

1−n>n is used only
if updating V. Note that downdating theith column only
requires knowing theith row of V.

The special structure and near diagonality ofRHS equa-
tions (1.4–1.10) license additional numerical efficiencies.
For example, letJ equalRHS equation (1.10). ThenJJ> =

diag(s)2− (diag(s)n)(diag(s)n)> is a symmetric diagonal-
plus-rank-1 matrix. for such matrices it is known [18, 9,
section 8.5.3] that the eigenvalues—diag(s′)2—can be found
quickly via Newton iterations for the roots off (s′2i) = 1−
∑ j

sj n j

s2
j−s′2i

, while the eigenvectors—
[

U′
0

0
1

]
—are proportional

to (diag(s)2− s′2i I)−1n. Equation (1.7) leads to a diagonal-
plus-rank-2 symmetric eigenproblem, requiring more so-
phisticated solution methods.

A.2 Controlling complexity If done naively, equation1.1
takesO(p(r + c)2) time, the rediagonalization takesO((r +
c)3) time, and the updates of the subspaces in equation1.6
takesO((p + q)(c + r)2) time. In the setting of a rank-
1 update of a fixed-rankSVD, these times can be reduced
to O(pr), O(r2), andO(r3), respectively, by expanding the
MGS, performing a sparse diagonalization, and using the fol-
lowing trick: Instead of performing the large multiplications
U′′ = [U,p]U′, V′′ = [V,q]V′ prescribed by equation1.6, we
leave theSVD decomposed into 5 matrices

Up×r ·U′r×r ·Sr×r ·V′>r×r ·V>r×q(1.11)

and only update the smaller interior matricesU′,V′. In the
case wherea is contained in the subspace ofU and similarly
b ∈ V, p and q can be ignored and the update is exact.
Otherwise the information inp andq can be expressed as
appends toU andV [3, appendix], or discarded under a fixed-
rank approximation. As mentioned above, it can be shown
[3] that for low-rank matrices (r ∼ O(

√
p)) the entireSVD

can be computed in a series of updates totalingO(pqr) time.

B Missing values

Consider a nonzero rectangular volumeV of possible up-
dates specified by opposite cornersy andz. Let zi be theith

element ofz. Assuming a uniform measure in this space, the
volume’s second moment is

ΣV
.= cov(V) = (

∫
x∈V

xx>dx)/(
∫

x∈V
1dx),(2.12)

where the normalizing quotient is∏i|zi 6=yi
|zi − yi |. Here the

origin is taken to be the data mean, so equation (2.12) is
interpreted as a covariance. Any dimension in whichyi =
−zi can be dropped (drop elementyi from y and similarly
for zi); symmetric bounds are uninformative, forcing the
imputed value in that dimension to be 0. Similarly, drop
dimensions for whichyi = zi ; no imputation is needed.
Expanding the integrals, we find that diagonal elements
of ΣV are (y2

i + yizi + z2
i)/3 and off-diagonal elements are

(yi +zi)(y j +zj)/4, or

ΣV = (y+z)(y+z)>/4+diag(w)/12,(2.13)

wherewi
.= (yi − zi)2. This is ak× k diagonal-plus-rank-

1 matrix wherek is the number of dimensions in which

yi 6= ±zi . ΣV hasEVD WΛW> = ΣV that can be computed
in O(k2) time directly from the vectorsy + z, y− z, using
the Newton method mentioned above. Updating theSVD

USV>= X with k vectors whose missing values are set to the
columns ofWΛ1/2 will duplicate the second-order statistics
of X ∪V , and therefore completes the imputative update.
E.g., it is equivalent to updating theSVD with n i.i.d. samples
from V , each scaled by

√
n, asn→∞. A single update using

just the column ofWΛ1/2 with the largest norm will give the
best single-vector approximation of the imputation.

This approach becomes more powerful when the uni-
form measure dx in equation (2.12) is replaced with a more
informative measure, e.g., the running estimate of data den-
sity dN (x|0,Σ) discussed below. The integrals are solvable
in closed form. IfΣ is a dense (nondiagonal) covariance,
even symmetric bounds become informative.

B.1 Probabilistic imputation Consider adding a vectorc
with missing values. Partitionc into c• andc◦, vectors of the
known and unknown values inc, respectively, and letU•,U◦
be the corresponding rows ofU. Imputation of the missing
values via the normal equation

ĉ◦ ← U◦diag(s)(diag(s)U>• U•diag(s))+(diag(s)U>• c•)
= U◦diag(s)(U•diag(s))+c•,(2.14)

yields the completed vectorĉ that lies the fewest standard de-
viations from the density of the (centered) data, as modelled
by a Gaussian densityN (x|0,Σ), whereΣ .= U>• diag(s)U•
is a low-rank approximation of the covariance of the data
seen thus far (X+ denotes Moore-Penrose pseudo-inverse).
Substituting equation2.14into equation1.8yields[

diag(s) U>ĉ
0 p

]
(2.15)

=
[

diag(s) diag(s)(U•diag(s))+c•
0 ‖c•−U•diag(s)(U•diag(s))+c•)‖

]
,(2.16)

whereU>ĉ is the projection of the imputed vector onto the
left singular vectors andp is the distance of the vector to that
subspace. As one might expect, with missing data it rarely
happens thatp> 0.

	title page
	page 2

	Fast online SVD revisions for lightweight recommender systems
	The problem
	The textsc {svd} in data mining
	Background
	Modifying the textsc {svd}
	Imputation and prediction
	The bootstrapping problem
	Application to collaborative filtering
	The instant movie recommender

	Discussion
	Changing tastes

	Acknowledgments
	Low-rank modifications
	Rank-1 modifications
	Controlling complexity

	Missing values
	Probabilistic imputation

