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Abstract

We present a survey of techniques and results from the Human-Guided Search (HuGS) project,
an ongoing effort to investigate interactive optimization. HuGS provides simple and general visual
metaphors that allow users to guide the exploration of the search space. These metaphors apply
to a wide variety of problems and combinatorial optimization algorithms, which we demonstrate
by describing the HuGS toolkit and as seven diverse applications we developed using it. User
experiments show that human guidance can improve the performance of powerful heuristic search
algorithms. HuGS is also a valuable development environment for understanding and improving
optimization algorithms. For two different problems, we have used HuGS to develop automatic
algorithms that produce new best results on benchmark problem instances.

1 Introduction

Most previous research on optimization focuses on producing algorithms that are more efficient than
previous algorithms on some class of problems. An algorithm’s efficiency is judged by the value
of the solutions it produces according to a given, well-defined objective function (such as the total
distance traveled in vehicle-routing problems) as well as amount of computation required to produce
those solutions.

This approach to evaluating optimization systems is, however, insufficient for many real-world
contexts in which optimization problems arise. First, people often need to understand and trust a
solution in order to be able to implement it effectively. For example, one person might need to explain
or justify it to others in order to gain their cooperation. Additionally, people might have to modify
a solution as unexpected events occur (e.g., a truck breaks down). Second, optimization systems are
typically solving only an approximation of the problem that is really of interest to its users. People
often know much more about a problem than they can specify in advance and, furthermore, cannot
specify what they know in the given selection-criteria language.

One approach to addressing these often-neglected aspects of optimization is to develop systems in
which people participate in constructing solutions. Interactive, or human-in-the-loop, optimization
systems have been developed for a variety of applications, including space-shuttle scheduling [5],
graph drawing [26], graph partitioning [20], vehicle routing [35, 2], and constraint-based drawing
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[27, 12, 29]. People can better trust, justify, and modify solutions that they help construct than
automatically generated solutions. Users can steer an interactive algorithm based on their preferences
and knowledge of real-world constraints. Interactive optimization also leverages people’s skills in
areas in which people currently outperform computers, such as visual perception, strategic thinking,
and the ability to learn.

In this paper, we provide an overview and present new results from our ongoing Human-Guided
Search (HuGS) project.1 In the HuGS framework, users can manually modify solutions, backtrack to
previous solutions, and invoke, monitor, and halt a variety of search algorithms. More significantly,
users can constrain and focus search algorithms by assigning mobilities, which we describe below,
to elements of the current problem. During the course of this project, we have created interactive
optimization systems for a variety of problems, developed general exhaustive and heuristic search
algorithms that are amenable to human guidance, and studied people’s ability to guide these search
algorithms [2, 20, 30, 17]. Additionally, we have developed the HuGS Toolkit, Java software which
supports the quick development of interactive optimization systems [18].

Our experiments show that human interaction can significantly improve the performance of search
algorithms even when measured by only the given objective function. In particular, our experiments
have shown that human guidance can improve the performance of an exhaustive search algorithm
for the capacitated-vehicle-routing-with-time-windows problem to the point where the interactive
algorithm is competitive with the best previously reported algorithms [2, 30]. Furthermore, our
interactive system was able to achieve the best performance we know of on benchmark problems for
the 2D Rectangular Strip Packing problem [21]. Additionally, an automatic system we developed
using HuGS was able to find new best solutions for the three largest benchmarks in the literature
for the two-dimensional hydrophobic-hydrophilic protein-folding problem [22].

Below, we describe related work and then present the current applications, techniques, toolkit,
experimental results, and recent results from the HuGS project.

2 Related Work

Interactive systems that leverage the strengths of both humans and computers must distribute the
work involved in the optimization task among the human and computer participants. Existing
systems have implemented this division of labor in a variety of ways.

In some interactive systems, the users can only indirectly affect the solutions to the current prob-
lem. For example, in interactive evolution, an approach primarily applied to design problems, the
computer generates solutions via biologically inspired methods and the user selects which solutions
will be used to generate novel solutions in the next iteration [31, 34].

Other systems provide more interactivity by allowing the users to control search parameters or
add constraints as the search evolves. Colgan et al. [7] present a system which allows users to
interactively control the parameters that are used to evaluate candidate solutions for circuit-design
problems. Several constraint-based systems have been developed for drawing applications [12, 29, 27].
Typically, the user imposes geometric or topological constraints on an emerging drawing.

Some systems allow more direct control by allowing users to manually modify computer-generated
solutions with little or no restrictions and then invoke various computer analyses on the updated
solution. An early vehicle-routing system allows users to request suggestions for improvements after
making schedule refinements to the initial solution [35]. An interactive space-shuttle operations-

1This paper contains material presented in previous conference publications [2, 20, 30, 17, 22, 21].
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scheduling system allows users to invoke a repair algorithm on their manually modified schedules to
resolve any conflicts introduced by the user [5].

The mixed-initiative approach to human-in-the-loop systems uses agents to mediate the cooper-
ation between the computation system and the user to help the user solve an optimization problem
(e.g., [33, 11]). The emphasis in this work is on not only on combining the skills of people and
computers to solve problems, but in particular on having the computer play an active role in the
collaboration itself. Thus, the work has focused on mixed-initiative interaction between the user
and computer in which the computer has some representation of the user’s goals and capabilities,
and can engage the human in a collaborative dialog about the problem at hand and approaches to
solving it.

In contrast to these other approaches, HuGS allows the user to focus the search algorithms more
directly through a combination of simple metaphors and visualizations and has been applied to a
much wider range of problems.

3 Applications

In this section, we briefly describe seven applications we have developed using the HuGS toolkit.
The first four are described in more detail in [17], the fifth in [21], and sixth and seventh are in
development.

The Crossing application is a graph layout problem [9]. A problem consists of m levels, each
with n nodes, and edges connecting nodes on adjacent levels. The goal is to rearrange nodes within
their level to minimize the number of intersections between edges. A screenshot of the Crossing
application is shown in Figure 1.

The Delivery application is a variation of the Traveling Salesman Problem [10]. A problem
consists of a starting point, a maximum distance, and a set of customers each at a fixed geographic
location with a given number of requested packages. The goal is to deliver as many packages as
possible without driving more than the given maximum distance. A screenshot of the Delivery
application is shown in Figure 1.

The Protein application is a simplified version of the protein-folding problem, using the hydrophobic-
hydrophilic model introduced by Dill [8]. A problem consists of a sequence of amino acids, each
labeled as either hydrophobic or hydrophilic. The sequence must be placed on a two-dimensional
grid without overlapping, so that adjacent amino acids in the sequence remain adjacent in the grid.
The goal is to maximize the number of adjacent hydrophobic pairs.

The Jobshop application is a widely-studied task scheduling problem [1]. In the variation we
consider, a problem consists of n jobs and m machines. Each job is composed of m operations (one
for each machine) which must be performed in a specified order. Operations must not overlap on a
machine, and the operations assigned to a given machine can be processed in any order. The goal is
to minimize the time that the last job finishes.

The Packing application is a two-dimensional bin packing problem [14, 15]. A problem consists
of n rectangles with their dimensions and a target width W . The rectangles must be placed parallel
to the horizontal and vertical axes. The goal is to pack the rectangles without overlap into a single
rectangle of width W and minimum height H. A screenshot of the Packing application is shown in
Figure 3.

The Heating application is a variation of the prize-collecting Steiner tree problem (see, e.g., [16]).
A problem consists of a set of potential customers, a value for each customer, a set of potential supply
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stations, a cost for laying pipe, and a map of local streets along which heating pipes can be laid.
The goal is to find the most profitable network of pipes.2

The Labeling application considers a classical problem in cartography (see, e.g., [6]). A problem
consists of a set of sites (e.g., cities on a map) and a rectangular label for each site. Each label can
be placed in any of four locations around each site. The goal is to place the maximum number of
labels such that no overlaps occur.3

3.1 Terminology

We use the following abstractions to allow a uniform description of the HuGS applications: problems,
solutions, moves, and elements. A problem is an instance of the type of problem being optimized.
For example, a Protein problem consists of a sequence of amino acids.

The goal of optimization is to find the best solution to the given problem. A Delivery solution,
for example, is a sequence of customers. We assume that for each application there is a method for
comparing any two solutions and that for any two solutions, one is better than the other or they are
equally good. As mentioned in the introduction, however, we assume that this total ordering may
merely approximate the real-world constraints and preferences known by the users. Additionally, for
most applications, it is possible to create infeasible solutions which violate some of the constraints
of the problem. For example, a Delivery solution may exceed the distance constraint.

For each application we have designed a set of possible moves, or transformations on solutions.
Applying a move to a solution produces a new solution. For example, in the Crossing application,
one possible move is to swap two adjacent nodes. For the Delivery applications, the moves include
adding or removing customers from the current route.

Finally, we assume that each problem contains a finite number of elements. The elements of
Crossing are the nodes, the elements of Delivery are the customers, and the elements of Protein are
the amino acids. Each move is defined as operating on one element and altering that element and
possibly others. For example, moving a node from the 3rd to the 8th position in a list, and shifting
the 4th through 8th nodes up one, would operate on the 3rd element and alter the 3rd through the
8th. As with fully automatic optimization, deciding which moves to include is an important design
choice for the developer of an optimization system. Our framework further requires the developer
to determine which elements that are altered by each move.

4 Techniques

4.1 Mobilities

Our system maintains and displays a single current solution, such as the ones shown in Figure 1.
Mobilities are a general mechanism that allow users to visually annotate elements of a solution in
order to guide a computer search to improve this solution. Each element is assigned a mobility: high,
medium, or low. The search algorithm is only allowed to explore solutions that can be reached by
applying a sequence of moves to the current solution such that each move operates on a high-mobility
element and does not alter any low-mobility elements.

2This problem is useful because district heating companies are faced with the problem of balancing the profit that
can be obtained by providing hot water connections to potential customers and the cost to build the network of pipes.
The Heating application is joint work with Andreas Moser, Vienna University of Technology.

3The Labeling application is joint work with Markus Chimani and Bin Hu, Vienna University of Technology.
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Figure 1: The Crossing and Delivery Applications.

We demonstrate mobilities with a simple example. Suppose the problem contains seven elements
and the solutions to this problem are all possible orderings of these elements. The only allowed move
on an element is to swap it with an adjacent element. Suppose the current solution is as follows, and
we have assigned element 3 low mobility (shown in dark gray), element 5 and 6 medium mobility
(shown in medium gray), and the rest of the elements have high mobility (shown in light gray):

A search algorithm can swap a pair of adjacent elements only if at least one has high mobility
and neither has low mobility. It is limited to the space of solutions reachable by a series of such
swaps, including:

Note that setting element 3 to low mobility essentially divides the problem into two much smaller
subproblems. Also, while medium-mobility elements can change position, their relative order cannot
be changed. Mobility constraints can drastically reduce the search space; for this example, there are
only 12 possible solutions, while without mobilities, there are 7!=5040 possible solutions. We have
found that this generalized version of mobilities useful in all of the applications described above.

4.2 Guidable Algorithms

As we describe below, our interface allows the user to choose and change which search algorithms
to employ and we have found it beneficial to provide a small suite of algorithms. We now describe
several algorithms that can be controlled by mobilities. First, we describe two variations of a brute-
force, exhaustive search. Then we describe a guidable version of a powerful heuristic, called tabu
search. Both of these algorithms are general and work on all of our applications for which a move
set is defined. We then describe a domain-specific, human-guidable search algorithm we designed
for the Packing application.
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GTabu (sol, mobilities, memSize, minDiv):
best← sol

originalMobilities← mobilities

until halted by user
m ← best move in legalMoves(sol,mobilities)
sol ← result of m applied to sol

if isBetter(sol, best) then

best← sol

mobilities← originalMobilities

else

mobilities← memory(m,mobilities,memSize)
mobilities← diversify(m,mobilities, minDiv)

return best

legalMoves (solution, mobilities):
returns the set of all moves m in moves(solution,e)
where e has high mobility in mobilities and every element
in altered(m) has high or medium mobility in mobilities

diversify (move, mobilities, minDiv):
restore any elements to high mobility that

were set to medium mobility by previous
call to diversify compute average
diversity of search (as defined in the paper)

if average diversity is less than minDiv

then set all elements with high mobility
in mobilities and diversity
less than minDiv to medium mobility

return mobilities

memory (move, mobilities, memSize):
restore any elements to high mobility that were

set to medium mobility memSize iterations
ago by Memory

set all high-mobility elements in altered(move)
to medium mobility

return mobilities

Figure 2: Pseudo code for guidable tabu search.

4.2.1 Exhaustive search

We use two variations of exhaustive search: steepest-descent and greedy. Both algorithms first
evaluate all allowed moves given a set of mobilities, then all combinations of two allowed moves, and
then all combinations of three moves and so forth. The steepest-descent algorithm keeps searching
deeper and deeper for the move that most improves the current solution. The greedy algorithm
immediately makes any move which improves the current solution and then restarts its search to try
to improve the solution that results from applying that move.

4.2.2 Tabu search

While we found that human guidance of a simple search algorithm to be surprisingly effective [2],
we were able to improve upon these results by providing the user with a guidable version of tabu
search. Tabu search is a heuristic approach for exploring a large solution space [13]. Like other
local search techniques, tabu search exploits a neighborhood structure defined on the solution space.
In each iteration, tabu search evaluates all neighbors of the current solution and moves to the best
one. The neighbors are evaluated both in terms of the problem’s objective function and by other
metrics designed to encourage investigation of unexplored areas of the solution space. The classic
“diversification” mechanism to encourages exploration is to maintain a list of “tabu” moves that
are temporarily forbidden, although others have been developed. Recent tabu algorithms often also
include “intensification” methods for thoroughly exploring promising regions of the solution space
(although our algorithm does not currently include such mechanisms). In practice, the general tabu
approach is often customized for individual applications in myriad ways [13].

We now present GTabu, a guidable tabu search algorithm. The algorithm maintains a current
solution and current set of mobilities. In each iteration, GTabu first evaluates all allowed moves on
the current solution given the current mobilities, in order to identify which one would yield the best
solution. It then applies this move, which may make the current solution worse, and then updates
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its current mobilities so as to prevent cycling and encourage exploration of new regions of the search
space. The pseudocode for GTabu is shown in Figure 2.

The algorithm updates the mobilities in two ways. First, the call to the memory function
prevents GTabu from immediately backtracking, or cycling, by setting elements altered by the
current move to medium mobility. For example, in Crossing, if the current move swaps two nodes,
then both nodes are set to medium mobility, so that these two nodes cannot simply be reswapped
to their original locations. The nodes are restored to their original user-specified mobilities after
a user-defined number of iterations elapse, controlled by an integer memSize which is an input to
GTabu. Most tabu search algorithms have a similar mechanism to prevent cycling.

A second mechanism, performed by the diversify function in Figure 2, encourages the algorithm
to choose moves that alter elements that have been altered less frequently in the past. The algorithm
maintains a list of all the problem elements, sorted in descending order by the number of times they
have been altered. The diversity of an element is its position on the list divided by the total number
of elements. The diversity of a move is the average diversity of the elements it alters. The diversity
of a search is the average diversity of the moves it has made since the last time it has found a best
solution. The user is allowed to indicate a target minimum diversity minDiv between 0 and 1 for the
search. Whenever the average diversity falls below this threshold, then any element with a diversity
less than minDiv is set to medium for one iteration. This forces the tabu algorithm to make a move
with high diversity.

Under the assumption that a system is more guidable if it is more understandable, we strove
to design a tabu algorithm that was easy to comprehend. Many automatic tabu algorithms, for
example, have a mechanism for encouraging diversification in which the value of a move is computed
based on how it affects the cost of the current solution and some definition of how diverse the
move is. The two components are combined using a control parameter which specifies a weight for
the diversification factor. We originally took a similar approach, but found that users had trouble
understanding and using this control parameter. Our experience from the training sessions described
in Section 5.2 is that users can easily understand the minDiv control parameter.

The understandability of the algorithm is also greatly enhanced by the fact that the tabu al-
gorithm controls its search by modifying mobilities. The users of our system learn the meaning of
the mobilities by using them to control and focus the search. All applications provide a color-coded
visualization of the users’ current mobility settings. This same mechanism can be used to display
GTabu’s mobilities.

4.2.3 Heuristic search for packing

We found that our local search algorithms were not effective for the packing problem. This is not
surprising in that past efforts to apply standard local search techniques, such as simulated annealing
or genetic algorithms have not been able to match the performance of simple heuristics (see [14]
for an overview). We now describe an improved and guidable version of one of the most successful
packing heuristics. Here, we assume that the orientations of the rectangles are fixed; in Section 6,
we consider a variation in which the rectangles can be rotated 90 degrees.

A common method for packing rectangles is to take an ordered list of rectangles and greedily
place them one by one. Perhaps the best studied and most effective heuristic in this setting is the
Bottom-Left (BL) heuristic, where rectangles are sequentially placed first as close to the bottom and
then as far to the left as they can fit. For some problems, BL cannot find the optimal packings [3],
nor does it perform well in practice when applied to random orderings. However, a very successful
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Figure 3: Interactive system: The image on the left is a screen shot of our system in use. The user has
selected a region to apply BLD* to and has frozen most of the rectangles (frozen rectangles shown in red/dark
gray, unfrozen in green/light gray). The image on the right shows a blowup of the selected portion on the
packing, after BLD* has run for a few seconds and the user has pressed the Best button to see the best
solution found. Given the aspect ratio of a computer monitor, we found it more natural to rotate the problem
by 90 degrees, so that there is a fixed height and the goal is to minimize the width of the enclosing rectangle.

approach is to apply BL to the rectangles ordered by decreasing height, width, perimeter, and area
and return the best of the four packings that result [14, 15]. We refer to this scheme as Bottom-
Left-Decreasing (BLD).

We developed a variation of the BLD heuristic called BLD* that considers successive random
perturbations of the original four decreasing orderings. Our intuition for why BLD* performs so
much better than random BL is that the decreasing sorted orders save smaller rectangles for the
end. BLD* chooses random permutations that are “near” the decreasing sorted orders used by BLD
as they will also have this property. There are many possible ways of doing this; indeed, there is a
deep theory of distance metrics for rank orderings [24]. BLD* uses the following simple approach:
start with a fixed order (say decreasing height), and generate random permutations from this order
as follows. Items are selected in order one at a time. For each selection, BLD* goes down the list of
previously unaccepted items in order, accepting each item with probability p, until either an item is
accepted or the last item is reached (in which case it is accepted). After an item is accepted, the next
item is selected, starting again from the beginning of the list. This approach generates permutations
that are near decreasing sorted order, preserving the intuition behind the heuristic, while allowing
a large number of variations to be tried. BLD* first tries the four orders used by BLD and then
permutes each of these orders in round-robin fashion.

While BLD* does not fit exactly into the framework for mobilities described above, we allowed
people to guide the algorithm in a simple fashion by assigning rectangles high or low mobilities:
rectangles with high mobility can be moved and those with low mobility are frozen in their current
location. The BL heuristic is then used to place each high-mobility rectangle as close to the bottom
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and then as far to the left as it can fit without overlapping any of the low mobility rectangles or any
of the high-mobility rectangles that have already been placed. Figure 3 shows a screenshot of the
interface and an example of how mobilities are used with BLD*.

4.3 Overview of User Actions

We now describe the full range of user actions in the HuGS framework. In our applications, the
system always maintains a single, current working solution which is displayed to the users. The users
try to improve the current solution by performing the following three actions:

1. manually choose a move to be applied to the current solution,

2. invoke, monitor, and halt a focused (via mobilities) search for a better solution,

3. revert to a previous or precomputed solution.

We now describe each type of action. The users can manually modify the current solution by
performing any of the possible moves defined for the current application on the current solution. In
many of our applications, a single user action on the GUI can invoke several moves. In the Delivery
application, for example, the user can select multiple customers and remove them all with a single
button press.

Users can also invoke a computer search for a better solution. The search algorithm starts from
the current solution and explores the space of solutions that can be reached by applying moves which
are allowed given the mobility assignments as described above. The users can choose which search
algorithm to invoke from among the selection described above (it is also simple to add a new search
algorithm to the system.)

After the users have invoked a search algorithm, they can monitor its progress to decide when
to halt it. A text display shows the score of the best solution the search has found and how many
seconds ago this solution was found. At any time, the user can query the search algorithm for
either the best solution found so far or the current solution it is considering. This solution becomes
the current visualized solution of the system. While the search is running the user can modify the
current visualized solution or reassign mobility values to problem elements. The user can restart the
search from these current settings, or halt the search.

While the search algorithm is running, the users can select from a variety of search-visualization
modes. The most efficient mode is to let the search algorithm run in the background without
updating the current visualized solution. The users can also observe the search more directly. The
users can put the search into “auto” mode, in which every solution the search considers is displayed,
or “poll” mode in which the computer is polled periodically for its current solution, or “step” mode
in which the computer waits for the user to press a button before moving on to the next solution it
considers. These modes are useful for developing applications as well as for learning about how the
system and search algorithms work.

Finally, the third type of user action is to revert to a previous solution. The system maintains a
history of previous solutions, which can be browsed and adopted by the users. The GUI also provides
menu commands to quickly undo or redo recent moves, as well as revert to the best solution seen so
far. Additionally, the users can browse and adopt a set of solutions that were precomputed by the
search algorithms prior to the interactive optimization session.
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5 Results

5.1 HuGS Toolkit

We now describe our Java middleware for rapidly developing interactive optimization systems. This
software was used to create the above applications and is available for research or educational
purposes.4 More details are described in [18].

Generic code in the toolkit is used to maintain the current working solution, the mobilities, and
the history. The file Input/Output, including saving and loading of problems and solutions, and
logging user behavior, are also performed by generic code. Furthermore, all our applications use the
same implementation of the exhaustive and tabu search algorithms and the GUI’s for invoking and
monitoring them. Even the packing algorithm is controlled by the same generic GUI as the other
search algorithms. Our implementation of the tabu search algorithm functions by modifying the
mobility assignments. Thus, there is no additional burden on the developer of a new application in
order to be able to use tabu search.

Of course, the developer of a new application must define what a problem is and what a solution
is for that application.5 Each problem instance needs to implement a function that returns all the
elements of that problem. Each solution instance must be able to return an object which represents
the score of that solution. An instance of a score object must be able to compare itself to another
instance of a score and decide if it is better, worse, or equal to that instance. Additionally, a
developer must define a set of moves which can be applied to solutions in this application. For
some applications, there might be several different types of moves. Additionally, the developer must
provide a function for generating all possible moves for a given element.

Each application requires a domain-specific visualization component. From the point of view of
the system, the visualization component has only three responsibilities. First, it must report any
manual moves made by the user. These moves will be applied to the current solution that the system
maintains. Second, the visualization component must have an update function which, when called,
triggers it to display the current solution and mobilities maintained by the system. Third, the system
must allow users to select and unselect problem elements. The system will query the visualization
component for the list of currently selected elements in order to maintain the mobilities. The users
can, for example, set all the selected elements to a particular mobility, as well as reset all elements
to any particular mobility.

5.2 Guided vs. Unguided Search

In [2] we describe an interactive optimization system for solving the capacitated-vehicle-routing-with-
time-windows problem [32]. This system follows the HuGS framework, although it was developed
prior to the HuGS Toolkit. It only provides the user with the exhaustive-search algorithm, not
GTabu. Even so, we were able to achieve results on the well-known Solomon benchmarks [32] that
were competitive with state-of-the-art algorithms designed specially for this problem (and these
benchmarks). We also demonstrated clearly that human-guidance was essential to obtain these
results. As one point of comparison: the best known solutions for the subset of benchmarks we
tested require 11.5 vehicles, on average, to satisfy all the customers requests. The average result
of 90 minutes of pre-computation followed by 90 minutes of interactive guidance of the exhaustive
algorithms produced solutions requiring 11.88 vehicles, on average. This matched the best results by

4Contact lesh@merl.com for details.
5This involves defining classes which implement Java interfaces for a Problem class and a Solution class.

10



Delivery Crossing
10 min. 10 min. 10 min. 10 min.
guided guided guided guided
tabu greedy tabu greedy

unguided tabu 61 29 79 25
unguided greedy >150 >150 >150 135

Table 1: Average number of minutes of unguided search required to match or beat the result produced
by 10 minutes of guided search.

any one algorithm up to 1999, the year before our publication. However, running our algorithm by
itself for 20 hours produces solutions that require 12.06 vehicles, on average, which is not competitive
with state-of-the-art algorithms.

In [17] we describe experiments comparing guided search of the tabu and greedy-exhaustive
algorithms to unguided search for the Delivery and Crossing applications (as well as some other
experiments not discussed here). By unguided search, we mean running either the tabu or exhaustive
algorithm without intervention and with all elements set to high mobility. We trained test subjects
for 2-4 hours on how to use our system. Each of our four subjects performed five 10-minute trials
using our system with only our GTabu algorithm and five 10-minute trials with only exhaustive
search. The test subjects were students from nearby selective universities. We fixed the minimum
diversity of tabu to be the one that produced the best results in preliminary experiments on random
problems for each application.

To evaluate each result, we compared it to 2.5 hours of unguided tabu search on the same
problem. Table 1 shows the number of minutes required by unguided tabu and unguided greedy,
on average, to produce an equal or better solution to the one produced by 10 minutes of guided
search. As shown in the table, it took, on average, more than one hour for unguided tabu search to
match or beat the result of 10 minutes of guided tabu search. Furthermore, the results of guided
tabu were substantially better than those of guided greedy, as can be seen by the fact that unguided
tabu overtakes the results of guided greedy search much more quickly.

Table 2 shows a detailed comparison of the result of 10 minutes of guided tabu search to between
10 and 150 minutes of unguided tabu search. The win and loss columns show how often the human-
guided result is better and worse, respectively. The table shows that for Crossing, 10 minutes of
guided search produced better results than 2.5 hours of unguided search in nine of 20 instances
and tied in two. When guided search loses, however, it does so by more, on average, than it wins
by. Incidentally, some test subjects consistently performed better than others. We plan to study
individual performance characteristics more fully in future work.

5.3 Recent Successes

We now describe the results we obtained from the Packing and Protein applications. In both cases,
the automatic methods we developed outperform previous automatic methods. (For Packing, human-
interaction further improves the results significantly.) Development of the automatic methods in
HuGS benefits from what we call researcher-in-the-loop. As algorithm developers, we generate many
ideas from solving problem instances ourselves using the HuGS system. Also, we often get ideas
for how to improve our algorithm by watching it in action. Our experience has been that it is well
worth the investment to build visualizations and to work within the HuGS framework, even if the
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Delivery Crossing
min- W L T ave ave W L T ave ave
utes win loss win loss
10 16 4 0 1.76 0.85 14 3 3 3.21 4.67
20 10 10 0 1.10 1.06 11 6 3 2.64 5.67
30 10 10 0 0.95 1.27 11 6 3 2.55 5.83
60 8 12 0 0.86 1.38 10 8 2 2.70 6.25
90 8 12 0 0.80 1.46 10 8 2 2.70 7.00
120 6 14 0 0.69 1.48 9 9 2 2.33 6.89
150 4 16 0 0.6 1.42 9 9 2 2.33 6.89

Table 2: The number of wins (W), losses (L), and ties (T) when comparing the result of 10 minutes
of human-guided tabu search to 10 to 150 minutes of unguided tabu search, as well as the average
difference of the wins and losses.

only goal is to produce automatic methods.
For example, we developed an exhaustive search using branch-and-bound techniques for the

Packing application. The key to this approach was a set of bounding techniques that reason about
gaps created by the currently placed rectangles. We developed these techniques by watching the
branch-and-bound algorithm in action and realizing that it was missing opportunities for bounding.
The resulting algorithm is extremely effective for problems with fewer than 30 rectangles and in
which the rectangles can be tightly packed with little or no unused space. For example, it solves
benchmark problems containing 25 rectangles in an average of 96 seconds. To our knowledge, the
best reported results were more than 5% above optimal [14].

For instances too large to be solved exhaustively, we used the BLD* algorithm described above.
We ran experiments on the benchmark instances described in [14]: here we review our results on the
N4, N5, N6 collections, each of which contains 5 instances. First, we established that that BLD*,
our variation of the BLD heuristic, outperforms the BLD heuristic itself. For example, after just one
minute, BLD* reduces the packing height from an average of 7.3% over optimal by BLD to about
5.3% over optimal on the N4-N6 data instances.

Our experiments show that human interaction improves BLD*.6 People can identify particularly
well-packed subregions of a given packing and then focus a search algorithm on improving the other
parts. People can also devise multi-step repairs to a packing problem to reduce unused space, often
producing packings that could not be found by the BL heuristic with any ordering of rectangles.
To prepare for our user experiments, we ran BLD* for 2 hours on on each instance in N4-N6. We
then performed one trial for each instance in which a user attempted to find a solution 1% closer
to optimal than the best solution found by BLD* within 2 hours. As shown in Table 3, the users
were able to reach these targets in about 15 minutes on average. In every case, the target was
reached within 30 minutes. While this is not exactly a “head-to-head” comparison, since the users
had the target scores to reach, the fact that people were able to achieve superior solutions so quickly
demonstrates the value of interaction.

We also tested our interactive system on the few other benchmarks we could find in the literature,
including in particular ones without known optimal solutions, referred to by Hopper as D1 and D3.
[14]. The best solutions for D1 and D3 in the literature appear to have height 47 and 114. We were

6This is unsurprising in that people are known to outperform computers at packing irregular polygons in industrial
applications [25].
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dataset number of percent over optimal time for users to find
rectangles by BLD* in two hours packing 1% closer to optimal

N4 49 4.3% 3.3% in 14 min., 21 sec.
N5 73 4.1% 3.1% in 13 min., 52 sec.
N6 97 3.3% 2.3% in 17 min., 12 sec.

Table 3: Interaction experiment results for the Packing application: The second column shows the
average percentage over optimal achieved by BLD* in two hours. These results are at least 2%-3%
closer to optimal than the best previously published results. The third column shows the average
time it took interactive use of BLD* to achieve a solution another 1% closer to optimal. The values
are averaged over the five problem instances in the corresponding collection.

able to find a solution with height 46 in about 15 minutes. We were able to match the 114 for D3
in about 20 minutes.

The Protein application, we used the HuGS toolkit to develop a new set of local moves, which
we call pull moves [22]. Pull moves are quite different than previous local moves applied to this
problem. We developed them in the process of improving our user interface to help users manually
move several elements at once. In Protein, the input sequence of amino acids must be placed on a
grid in a non-overlapping path, such as those shown in Figure 4. It was quite tedious for the user
to modify the path manually, and so we designed a “smart” manual move in which the user would
re-position one amino acid and then the system would try to move as few other amino acids as
possible to establish a valid path. Essentially, one amino acid is moved and others are pulled after
it.

While users have so far found it difficult to guide the algorithms in Protein, perhaps because
of the unintuitive geometric reasoning required, GTabu has proven extremely effective using pull
moves. The highlight of our experimental results is that we have found new best solutions (i.e., lowest
energy configurations) for the three longest benchmarks we found in the literature and matched the
best results for the others. For example, a sequence of length 85 used in [19, 23] was conjectured to
have a ground state energy, or minimal energy, of −52; we have found a configuration with energy
−53. We have similarly found new best configurations for two sequences of length 100 used in [4, 28].
We found multiple configurations with each new best score: one sample for each is shown in Figure 4.

The length-85 example is particularly compelling. In [19], it is stated that the optimal ground
state has energy −52; it appears that the authors constructed this sequence themselves with an
optimal solution in mind to test their algorithm. The genetic algorithms of [19] found a ground
state of −47. In [23], an evolutionary Monte Carlo algorithm found a ground state of −52, but only
by specifying constraints that significantly cut down the search space. That is, the algorithm is
modified to constrain specified subsequences of hydrophobic residues (covering approximately 40%
of the sequence) to take one of three forms. Our algorithm finds several unstructured configurations
with energy −53.

6 Latest Results

We now briefly describe recent results in the variation of the Packing in which the rectangles can be
rotated by 90 degrees.

First we modified the BLD* heuristic as follows. We use a single base order, in which the
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Figure 4: New best solutions for simplified protein-folding benchmarks. From left to right there is
a −53 configuration for the S85 sequence, a −48 configuration for S100a and −50 for S100b. The
squares represent hydrophobic amino acids, and the circles represent hydrophilic ones. Thus each
image contains the problem definition as well as its solution. The score is the number of vertically
or horizontally adjacent nonsequential hydrophobic pairs.

rectangles are sorted in decreasing order by their smaller dimension. We then permute that order
as described above in Section 4.2.3. Given an ordering, we place each rectangle by calling the BL
heuristic on both possible orientations of the rectangle. We chose the orientation that puts the top
right corner of the rectangle closer to the bottom, or closer to the left to break ties. We prefer
the tall orientation to the wide orientation if there is still a tie. This variation outperforms the
other variations we tested by a substantial degree. The variations we tested included ordering the
rectangles by their larger dimension, and choosing the placement based on the bottom left corner or
the center of the rectangle.

Allowing BLD* to change the orientation improves the packings considerably. For the N4 and
N5 benchmark sets, two hours of computation yields solutions 2.75% over optimal, compared with
4.2% over optimal using the given orientations.

We added a feature to our interactive Packing application which allows a user to manually
reorient a rectangle. Then we again ran tests in which the users attempted to find solution 1% closer
to optimal than the best solution found by BLD* within 2 hours. We thought this task might be
too difficult since the targets were so much closer to optimal. However, for the 10 benchmarks in
N4 and N5 it only took an average of 23 minutes and nine seconds to achieve these scores.

7 Conclusions and Future Directions

A major aim of our research is to better understand general principles of interactive optimization
and to generate general ideas, techniques, and software. While interactive optimization systems have
been built for a variety of applications, no other interactive optimization approach has previously
been applied to such a varied set of optimization problems as we have described here.

All of the applications described in this paper, however, consider problems with, at most, several
hundred elements. A future research direction is to explore techniques for applying interactive
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optimization to larger problems, in which people cannot view all the elements at once on the computer
screen.

There is also a need for performing deeper analysis and user experimentation on interactive sys-
tems. In [30], we present initial investigation into understanding of how well people can perform the
various tasks in HuGS, but would like to build on this work. Additionally, we would like to inves-
tigate whether the impact of human-guidance increases or decreases as the speed of the algorithm
increases. We would also like to carry out experiments to investigate how people’s understanding
and trust of solutions is effected by participating in the optimization process.

Finally, we see a need for a broader set of metrics for evaluating optimization systems. If
two algorithms are equally efficient, but one affords more or better interaction then it is superior
for many tasks. Indeed, in many contexts, interaction is more important than efficiency because
the optimization algorithm is working with an impoverished objective function and the ability to
successfully implement the solution depends on how well people understand and trust it.
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