
MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

A unifying theorem for spectral embedding
and clustering

Matthew Brand Kun Huang∗

TR-2002-42 November 2002

Abstract

Spectral methods use selected eigenvectors of a data affinity matrix to obtain a data representation
that can be trivially clustered or embedded in a low-dimensional space. We present a theorem that
explains, for broad classes of affinity matrices and eigenbases, why this works: For successively
smaller eigenbases (i.e., using fewer and fewer of the affinity matrix’s dominant eigenvalues
and eigenvectors), the angles between similar vectors in the new representation shrink while the
angles between dissimilar vectors grow. Specifically, the sum of the squared cosines of the angles
is strictly increasing as the dimensionality of the representation decreases. Thus spectral methods
work because the truncated eigenbasis amplifies structure in the data so that any heuristic post-
processing is more likely to succeed. We use this result to construct a nonlinear dimensionality
reduction (NLDR) algorithm for data sampled from manifolds whose intrinsic coordinate system
has linear and cyclic axes, and a novel clustering-by-projections algorithm that requires no post-
processing and gives superior performance on challenge problems from the recent literature.

Also presented at NIPS’02 workshop on spectral methods.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in
part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of Mitsubishi Electric Information Technology Center America; an
acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Information
Technology Center America. All rights reserved.

Copyright c©Mitsubishi Electric Information Technology Center America, 2002
201 Broadway, Cambridge, Massachusetts 02139

∗UIUC EECS



Proceedings, 9th International Conference on Artificial Intelligence and Statistics, AISTATS, Key West,
Florida



A unifying theorem for spectral embedding and clustering

Matthew Brand and Kun Huang
Mitsubishi Electric Research Labs, Cambridge, Massachusetts, USA

Electrical & Computer Engineering, University of Illinois at Urbana-Champagne, USA

Abstract

Spectral methodsuse selected eigenvectors of a
data affinity matrix to obtain a data representa-
tion that can be trivially clustered or embedded
in a low-dimensional space. We present a the-
orem that explains, for broad classes of affin-
ity matrices and eigenbases, why this works:
For successively smaller eigenbases (i.e., using
fewer and fewer of the affinity matrix’s domi-
nant eigenvalues and eigenvectors), the angles
between “similar” vectors in the new represen-
tation shrink while the angles between “dissim-
ilar” vectors grow. Specifically, the sum of the
squared cosines of the angles is strictly increas-
ing as the dimensionality of the representation
decreases. Thus spectral methods work because
the truncated eigenbasis amplifies structure in the
data so that any heuristic post-processing is more
likely to succeed. We use this result to construct
a nonlinear dimensionality reduction (NLDR) al-
gorithm for data sampled from manifolds whose
intrinsic coordinate system has linearand cyclic
axes, and a novel clustering-by-projections algo-
rithm that requires no post-processing and gives
superior performance on “challenge problems”
from the recent literature.

1 Introduction

Spectral methods for multivariate data analysis are notable
both for their practical successes and for their rapidly de-
veloping theoretical underpinnings. A spectral algorithm
typically begins with an “affinity matrix” of pairwise rela-
tionships between the samples or the variates, and derives
a more useful representation of the data from its eigen-
value decomposition (EVD), often using just one or a few
eigenvectors (a truncated eigenbasis). Many classic dimen-
sionality reduction and nonlinear embedding algorithms
have this character: Principal components analysis (PCA)
[11] uses the variates’ covariance matrix; multidimensional
scaling (MDS) [16] uses the samples’ pairwise distance ma-
trix; kernelPCA [1, 24] uses a kernel matrix where the ker-
nel functionκ(xi ,x j) represents the dot product of samples

in an unknown “feature space1”; and locally linear embed-
ding (LLE) [23] uses a matrix containing correlations of
samples’ barycentric coordinates.

Spectral methods have been even more successful for data
clusterings and graph partitionings: Spectral bipartitioning
[9, 6] cuts a graph in two by thresholding the second eigen-
vector of the graph’s normalized Laplacian matrix, and nu-
merous clustering algorithms use selected eigenvectors of
dot-product or kernel matrices to re-represent the data for
clustering by simpler heuristics such as thresholding or K-
means [25, 2, 5, 7, 27, 21, 29, 13, 3, 18, 19, 4, 20, 22].

While the statistical basis and optimality ofPCA is well
understood, virtually all other spectral methods are moti-
vated by imperfect analogies between data-derived graphs
and physical problems (e.g., harmonic analysis2 and ran-
dom walks3), or as approximations to other problems (e.g.,
vector quantization [2], min-cut [27], or max-flow [6]).

Underlying all this work is the notion that the truncated
eigenvector basis somehow makes the problem simpler for
the subsequent analysis. Our theoretical goal is to explain
how and why this works.

Embeddings and clusterings imply loss of information,
but there has been little effort to bound or even quantify
what is lost and characterize what is conserved. This is
acutely true for the vast majority of algorithms in which the
spectral analysis is just a prelude to further information-
lossy data analysis. Promising steps in the right direc-
tion include work by Alpert & Yao [2] that equates spec-
tral partitioning with vector quantization (thereby imply-
ing an objective function), and analyses by Fiedler, Per-
ona & Freeman, Shi & Malik, Meila & Shi, and Weiss et
al. [9, 21, 27, 29, 19, 20] that justify using one or a few
eigenvectors as a cluster indicator when the data is already
clustered or nearly so. In particular, if the affinity matrix
already has a block structure, then some of its eigenvectors
will be piece-wise constant, such that if itemsi and j share
cluster membership, elementsi and j in these eigenvectors

1Feature space is the “linearization space” of Aizerman et al.
[1], in which Euclidean relationships between points are consis-
tent with the kernel’s similarity measure.

2The eigenvectors of a graph’s normalized Laplacian matrix
are analogous to the modes of vibration the graph would exhibit
if shaken [8].

3The eigenvectors of a stochastic matrix describe the steady-
state properties of an infinite random walk on the graph [6, 19].
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will have the same value [29, 19, 20]. For nearly clustered
data, the eigenvectors are approximately piecewise.

However, this leaves open many questions, particularly
when the data isnot nearly clustered: What special proper-
ties should the affinity matrix have? Stochasticity? Unit di-
agonal? Positive definiteness? Unit spectral radius? Which
and how many eigenvectors should be used? What in-
formation is conserved in a truncated eigenbasis? Obvi-
ously, the answers to these questions should inform the
post-processing of the eigenvectors.

In this paper we develop a unifying view of spectral meth-
ods that answers many of these questions and gives guid-
ance for the construction of clustering and nonlinear di-
mensionality reduction algorithms. For most of our dis-
cussion, it will be useful to think of the affinity matrix
in terms of a (possibly unknown) kernel: Affinity value
Ai j = κ(xi ,x j) = Φ(xi)>Φ(x j) is the dot product of two
vectors representing the (usually unknown) locations of
points i and j in a high-dimensional feature space asso-
ciated with the kernel. Spectral analysis gives a new data
representation derived from the eigenvalues and eigenvec-
tors of the symmetric affinity matrixA. To summarize the
main theoretical result:
(1) An eigenvalue-scaled eigenvector representation of the
data encodes angles (equivalently, correlations) between
points embedded in the surface of a hypersphere.
(2) When the representation is truncated by suppressing the
smallest magnitude eigenvalues, the angles (equiv., correla-
tions) between high-affinity points are least distorted, high-
lighting the manifold structure of the data.
(3) As the representation is further truncated, the angles
(equiv., correlations)decreasebetween points having high
affinity and increasebetween points having low affinity,
highlighting the cluster structure of the data.

In short, nonlinear dimensionality reduction and clustering
can be obtained from the same process. The theorem is
limited to symmetric non-negative definite affinity matri-
ces, but a corollary establishes relevance to non-positive
matrices as well, and to asymmetric matrices (e.g.,B) via
their Grams (B>B or BB>).

In the remainder of the paper we leverage this theorem
into novel methods for nonlinear dimensionality reduction
(NLDR) and clustering. TheNLDR algorithm maps the data
to a mixed vector and toric space, with the linear or cyclic
nature of each axis determined from statistical tests. The
clustering algorithm works entirely by projections, whose
information loss is easily characterized and minimized or
bounded at each step. Experiments show that it produces
high-quality clusterings of a wide variety of “challenge
problems” exhibited in the recent literature. We also use
it to solve an unusually difficult visual segmentation prob-
lem.

2 The polarization theorem

Let A ∈R D×D be a non-negative definite symmetric matrix
having eigenvalue decomposition (EVD) VΛV> = A with
eigenvalues sorted in descending order on the diagonal of
Λ. Define representationX .= Λ1/2V> and let truncated
representationX(d) be the topd rows of X—the d princi-
pal eigenvectors scaled by the square roots of their associ-
ated eigenvalues. A well-known property of such truncated
EVDs is thatA(d)

.= X>(d)X(d) is the best rank-d approxima-
tion to A with respect to the Frobenius norm; equivalently,
the most energy-preserving projection to rankd.

Let Y(d) be an angle-preserving projection of the column
vectors ofX(d) onto the surface of ad-dimensional hyper-
sphere, obtained by scaling each column ofX(d) to unit
norm. The angle between two column vectorsxi ,x j ∈ X(d)
(equivalentlyyi ,y j ∈ Y(d)) is

θi j
.= ∠(xi ,x j) = arccos

x>i x j

‖xi‖ · ‖x j‖
(1)

and the correlation between two vectorsxi ,x j ∈ X(d)
(equivalentlyyi ,y j ∈ Y(d)) is

corr(xi ,x j) = y>i y j = cosθi j . (2)

We may now state the main result:

Theorem (polarization): As positive (resp., non-
negative) A is projected to successively lower ranks
A(D−1),A(D−2), · · · ,A(d), · · · ,A(2),A(1), the sum of squared
angle-cosines∑i 6= j(cosθi j )2 (equivalently squared cor-
relations ‖Y>(d)Y(d)‖2F ) is strictly increasing (resp.,
non-decreasing).

In short, as the dimensionality of the representation is re-
duced, the distribution of cosines migrates away from 0
toward the two poles±1, such that angles migrate from
θi j = π/2 to θi j ∈ {0,π}.
The full proof requires a large number of lemmas and runs
to several pages; because of page limits it will be published
separately. The following proof sketch gives the flavor
of the argument: The identity diag(Λ) = (V ◦V)diag(A)
allows one to derive the distribution of the nonzero
eigenvalues[γ1, · · · ,γd] of the cosine matrixY>(d)Y(d) =

diag(diag(A(d)))−1/2A(d)diag(diag(A(d)))−1/2. One can
then show that asd ↓ 1 the variance of the eigenvalues
grows. However, the projection onto the hypersphere keeps

the mean root-eigenvalue constant at1
d ∑d

i γ1/2
i = 1. There-

fore the sum∑d
i γi = trace(Y>(d)Y(d)) = ‖Y>(d)Y(d)‖2F =

∑i 6= j(cosθi j )2 +D grows monotonically.

The following two corollaries will be developed into algo-
rithms in the remainder of the paper:

Corollary (embedding): Suppressing the smallest-
magnitude eigenvalues ofA gives a d<D dimensional em-
bedding in which small angles are least distorted.



This unsurprising corollary is quite similar to the motiva-
tion for PCA. In our case, the mass-preserving embedding
spreads the data out on the hypersphere surface, preserving
small angles most accurately because their cosines com-
prise most of the energy in the affinity matrix. This means
that local relations between nearby points are well pre-
served. In the next section we show that this allows one to
construct a relatively low-dimensional embedding for affin-
ity data, with the unusual feature that the embedding space
may have both linear and cyclic degrees of freedom.

Corollary (clustering): Truncation of the eigenbasis am-
plifies any unevenness in the distribution of points on the
d-dimensional hypersphere by causing points of high affin-
ity to move toward each other and other to move apart.

In short, the distribution approaches a clustering for small
d� D. This explains many, if not all, spectral clustering
methods: Using a subset of all the eigenvectors emphasizes
the data’s cluster structure, improving the output of any
heuristic clustering procedure. This doesnot mean that the
lowest-dimensional embedding is the best one for cluster-
ing; there is a tradeoff between amplifying cluster structure
and losing information. In section4, we show that by us-
ing a large subset of eigenvectors one can depend entirely
on projections andEVDs to do the clustering, removing the
need for heuristic post-processing.

Although the theorem is limited to non-negative symmet-
ric affinity matrices, it also has explanatory value for spec-
tral methods that employ selected eigenvectors of non-
positive matrixes: Every real symmetric matrix can be writ-
tenC = A−B where positive semi-definite matricesA and
B satisfy rank(A)+ rank(B) = rank(C) andA, constructed
from the positive part ofC’s spectrum, is the best (least-
squares) gram approximation ofC (one offering a real-
valued decompositionA = X>X). The theorem applies to
A. For example, Weiss [29] showed that clustering meth-
ods related to the min-cut problem (e.g., [21, 27, 18]) are
of this nature: Although posed as generalized eigenvalue
problems with non-positive Laplacian matrices, these al-
gorithms ultimately consult a single eigenvector from the
positive part the spectrum of the normalized Laplacian ma-
trix. It is worth noting that it follows from basic properties
of the normalized Laplacian [6] that either (1) this eigen-
vector is only approximately piecewise constant, present-
ing some uncertainty for the final clustering, or (2) eigen-
value multiplicity makes the choice of eigenvector ambigu-
ous. The polarization theorem suggests that additional rel-
evant information lies in the remaining eigenvectors; below
we construct an algorithm that exploits this information and
eliminates the abovementioned ambiguities.

3 Dimensionality reduction

Motivated by the first corollary above, we observe thatY(d)
is a low-dimensional nonlinear embedding of the data onto
the surface of ad-dimensional hypersphere, with the arc-

length between two points inversely related to their affinity
score. Let us choose a dimensionalityd that truncates only
the lesser eigenvalues of the affinity matrixA. As in PCA,
this choice is usually a matter of eyeballing the eigenvalue
spectrum, unless one has prior knowledge about the true
noise levels in the data and how they affect the kernel.

Since it is difficult to work with spherical embeddings, our
goal is to “re-embed” the data in a vector space, where pos-
sible. Letp be the point on the hypersphere surface having
smallest arc-length to all points inY and let[u1, · · · ,ud−1]
be an orthogonal basis of the hyperplane tangent to the sur-
face atp. (Note thatU .= [u1, · · · ,ud−1,p] satisfiesU>U =
I .) Eachui specifies a direction around the hypersphere
which can be visualized as a great circle parallel toui and
passing throughp. Eachui can be interpreted as one of the
axes of a projection toR a×T b—the Cartesian product of
an a-dimensional vector space and ab-dimensional toric4

space—witha+ b = d−1. If the data wraps fully around
the hypersphere along directionui , then axisi is cyclic; if
the data wraps only partway around the hypersphere along
directionu j , then axisj is linear.

Much asPCA axes are statistically motivated from multi-
variate gaussian distribution, the tangent pointp and axes
U can be estimated by fitting a gaussian distribution to the
surface of a hypersphere. The complex Bingham distribu-
tion [15] is a multivariate gaussian density ony∈ C Sd−1⊂
C d conditioned on the fact that all vectors are unit-length
(y∗y = 1, wherey∗ denotes complex conjugate transpose):

p(y|Σ) = C(Σ)−1exp(y∗Σy). (3)

The complex Bingham is parameterized by hermitian ma-
trix Σ = Udiag([κ1, · · · ,κd])U∗ whose eigenvaluesκ1 <
κ2 < · · · < κd−1 < κd = 0 are the concentration parame-
ters of the density. A strongly negativeκi � 0 indicates
that the density has little extent along directionui . The last
eigenvectorud points to the mode of the distribution, thus
p = ud. The normalizing constantC(Σ) is calculated via the
matrix confluent hypergeometric function1F1 [14], which
in this case has a compact form discovered by Kent [15]:

C(Σ) = 1F1(
d
2
,
1
2
,diag([κ1, · · · ,κd])) (4)

= 2πd−1
d−1

∑
j=1

eκ j

∏i 6= j(κ j −κi)
. (5)

Jupp and Mardia [12] showed that the direction vec-
tors in U and the concentration parameters[κ1, · · · ,κd−1]
are related to the scatter ofY through its EVD

Udiag([λ1, · · · ,λd])U∗= YY>,with 0< λ1< λ2< · · ·< λd

4A toric spaceT n = (S1)n hasn cyclic axes but, unlike spheri-
cal spaceSn, every point has a unique set of ordinates modulo 2π;
there are no poles presenting singularities. E.g.: when walking,
leg and arm phase are two cyclic variates inT 2; but the orienta-
tion of a featureless cone in 3-space is described by two variates
in S2 (a.k.a. Euler angles).



satisfying

λ j =
∂ logC(Σ)

∂κ j
. (6)

For large sample sizes with concentrated density,κ j ≈
−c/λ j for some constantc. Numerical solution for the
concentration parameters in higher dimensions is feasible
but nontrivial. Fortunately, for dimensionality reduction,
knowing theEVD of the scatter suffices: Its eigenvectors
U = [u1, · · · ,ud−1,p] areexactlythe maximum likelihood
(ML ) estimate of the point of tangency (a.k.a. modal direc-
tion) and the axes of the tangent space, while its eigenval-
ues[λ1, · · · ,λd] give a rough indication of which axes are
cyclic: A small eigenvalue (λi ≈ 0) indicates that the data
is approximately linear in directionui ; a large eigenvalue
(λi ≈ λd) indicates the axis is cyclic.

random points on cylinder side view

spherical embedding from affinity matrix

mode

side view with Bingham axes

linear

cyclic

Figure 1: Dimensionality reduction of points distributed on
a 3D cylinder (in 10D space) to the 2D spaceR 1×T 1—one
linear axis and one cyclic axis. 500 points are randomly
generated on the surface of a 3D cylinder embedded in 10D
space, and contaminated with isotropic 10D gaussian noise.
The top two images show a 3D and a 2D projection of the
points. The bottom two images show an embedding of the
affinity matrix on the surface of a 3D sphere. The embed-
ding forms a wide belt around the equator. The arrows
show the modal direction and two degrees of freedom of
a Bingham distribution fitted to the embedding. Statistical
tests for uniformity indicate that the data is cyclic around
the equator but linear in the other direction.

To test more precisely whether the data is cyclic in direc-
tion ui around the surface of the hypersphere, consider the
projection of the data onto the great circle parallel toui

and passing through the modeud. A uniform distribution
on this circle (= S1 = T 1) implies that the data is cyclic
in direction ui . The projection isZ .= [z1, · · · ,zN] with
z j ∝ [ud,ui ]>y j , ‖z j‖ = 1. With this projection, we can
apply a result of Mardia [17] which gives a statistical test

500 points from swiss roll + noise

spherical embedding from affinities

m
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e
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top view map to 2D vector space

side view

Figure 2: Dimensionality reduction of points distributed on
a curled plane in 10D space to the 2D vector spaceR 2. The
data is analyzed as in figure1, but the spherical embedding
does not wrap all the way around the equator. The sta-
tistical test indicates that the data is Bingham-distributed
in both directions, so the sphere’s surface is azimuthally
mapped to a 2D vector space, recovering the original planar
coordinate system. Since the original data manifold passes
close by itself, some points, particularly at the ends, have
affinity for nonlocal neighbors, resulting in some distortion
in the recovered coordinates.

to assess the hypothesis that a distribution on the (perime-
ter of the) unit circle is uniform rather than complex Bing-
ham: Letγ1, γ2 be the eigenvalues of the normalized scatter
ZZ>/n. Then, for large data-sets (n� 0),

3n(γ1− γ2)2' χ2
3, (7)

whereχ2
3 is a chi-squared distribution with three degrees of

freedom. Thus we may reject the hypothesis that axisui is
uniform (cyclic) with confidence Pr(χ2

3 > 3n(γ1− γ2)2).
Once identified, the non-cyclic axes are isolated by pro-
jecting Y onto the union of the non-cyclic axes andp,
then rescaling the resulting vectors to unit norm. After
projection onto this reduced hypersphere, the modal point
is [0, · · · ,0,1] and the Bingham axes are similarly axis-
aligned. An azimuthal equidistant mapping at the modal
point then takes the points into a vector space. The pro-
cess is illustrated in figure1 for 10D points noisily sam-
pled from a 2D nondevelopable5 manifold having genus
1 (a cylinder) and in figure2 for 10D points noisily sam-
pled from a 2D developable manifold having genus 0 (a
rectangular plane curled into a “swiss roll”). The affinity
matrix for all data-sets in this paper isAi j = κ(xi ,x j) ∝

5A “developable”d-dimensional manifold embedded inR n

can mapped toR d without internal distortions, e.g., a developable
surface can be unrolled and flattened without stretching.



exp−(‖xi −x j‖2/2σ2), whereσ is taken to be the average
of the distances between each point and its closest neigh-
bor (which we denoteσs). For simplicity of analysis, we
normalize the affinity matrix by projecting it to the nearest
doubly stochastic matrixP .= diag(d)Adiag(d) using a fast
modification of the Sinkhorn procedure [28] to solve ford
satisfyingP1= 1 (andP>1 = 1 sinceP> = P). While not
crucial to this method, a doubly stochastic matrix has two
properties that make it appealing as a model of the data:
P can be interpreted as the transition probabilities of a ran-
dom walk on the data; andP’s largest eigenvalueλmax= 1
has corresponding eigenvectoru1 ∝ 1, which implies that
the stationary distribution of the random walk is uniform
(every point is equally probable). To obtain the embed-
dings in the figures, we discarded the totally uninformative
u1 and constructedY(d) as in section2 from eigenvectors
2-4 of P, then fitted Bingham densities to the results to de-
termine the appropriate embedding inR a×T b.

One could also make embeddings inR a×T b×Sc, though
testing uniformity hypotheses onSc for c> 1 requires ex-
plicit calculation of the Bingham concentration parameters.
In practice, we find that theML modal estimator for the
complex Bingham distribution is rather sensitive to noise;
many samples may be necessary to get a good estimate.
Fisher or Watson distributions may be better behaved, but
currently they are less tractable analytically and computa-
tionally. We turn now to the problem of clustering, where
we obtain an easily analyzed, highly competitive algorithm.

4 Clustering

Spectral methods have been extensively studied in graph
partitioning and clustering problems. Fiedler [9] first
showed that the eigenvector of the Laplacian matrix corre-
sponding to the second eigenvalue gives an embedding of
the graph in a real line; cutting this embedding at the ori-
gin gives a bipartitioning of the graph. This was extended
to k-way partitioning where the feature points are mapped
into a k-dimensional space with the new coordinates be-
ing the normalized row vector of the matrix formed by the
first k eigenvectors of the affinity matrix [25, 26]. Simi-
larly, in Ng et al. [20], the normalized row vectors of the
matrix formed by the firstk weighted eigenvectors are used
as the input to a k-means clusterer, and a perturbational
analysis was used to show that the results should be sta-
ble if the data is already “nearly clustered”. In Chan et
al. [5], the directional angle between the row vectors of the
first k eigenvectors of the Laplacian matrix was used as a
new distance measure for partitioning. Alpert & Yao [2]
equated partitioning with the problem of clustering these
row-vectors, and found that the more eigenvectors used, the
better. Spectral bipartitioning methods were adapted for vi-
sual clustering problems by Perona and Freeman [21] and
Shi & Malik [27]. Analyses by Weiss [29] and Meila & Shi
[18, 19] showed that normalizing a nearly block-structured
affinity matrix makes its eigenvectors approximately piece-

(a) (b) 

(c) (d) 

0,0,0

Figure 3: Spectral clustering of data distributed in three
rings. (a) Cluster assignments are indicated by different
markers. (b) The initial log-affinity matrix, sorted by true
clusters (the algorithm is blind to such orderings). (c) The
P matrix at convergence after 4 iterations. (d) In the con-
verged representation, all the points belonging to any one
cluster are co-located in a “corner” of a 3D sphere.

wise constant, and therefore easy to interpret as cluster as-
signments. However, such structure is not guaranteed for
real problems, and some post-processing is necessary.

Our goal in visiting this already crowded field is to elimi-
nate heuristic post-processing steps. Based on the our theo-
retical result, we constructed one (of many possible) spec-
tral clustering algorithms in which there is no post-EVD

clustering or thresholding; instead, the stochastic eigenvec-
tors form a discrete indicator matrix showing the member-
ship of each point.

Our basic strategy is to cast clustering as two alternat-
ing projections: Projection to low-rank, and projection to
the set of zero-diagonal doubly stochastic matrices. In
both cases it is easy to characterize what is conserved
and quantify what is lost. The projection to lower rank
A → A(d) (or P→ A(d)) is exactly the process character-
ized by the polarization theorem: We polarize the distribu-
tion of angles with minimal loss of energy‖A −A(d)‖2F .
The projection to a zero-diagonal doubly stochastic ma-
trix A(d) → P = diag(d)(A(d)− diag(diag(A(d))))diag(d)
suppresses any differences in the stationary probability
of points induced by the projection to low-rank. Disre-
garding the suppressed diagonal, this projection is simply
an angle-preserving rescaling of the embedding vectors,
because diag(d)A(d)diag(d) = diag(d)X>(d)X(d)diag(d) =
(X(d)diag(d))>(X(d)diag(d)). Suppressing the diagonal
induces negative eigenvalues in the spectrum ofP (associ-
ated with removing energy placed on the diagonal by the
positive eigenvalues); these eigenvalues account for less



(a) (b) (c) 

(d) (e) (f) 

Figure 4: A gallery of “challenge problems” adapted from [20] and successfully clustered by our method. Cluster member-
ship is indicated by marker symbol. As with all radial kernel methods, clustering reflects connectivity and scale similarity;
thus the size of the kernel has an effect on the results: The same data-set is differently clustered withσ = 10σs in (c) and
σ = 2σs in (d) (settingσ = σs breaks the sides from the corners). A very similar data-set was only bipartitioned after a
search overσ in [20]. Similar results can be observed for (e) and (f) whereσ = σs/2 for (e) andσ = σs for (f).

than half the energy‖P‖2F in P. We project to lower rank by
suppressing the negative eigenvalues and the uninformative
unit eigenvalue. This gives an automatic determination of
d and a bound on the loss of variance. The alternating pro-
jections terminate when the resultingP matrix has two or
more stochastic (unit) eigenvalues, implying reducibility.
(A reducible matrixP can be row- and column-permuted
into block-diagonal form, e.g., figure5c).

Analysis: It can be shown that(1) If P has unique posi-
tive nonstochastic eigenvalues, alternating the projections
P→ A(d) and A(d) → P will drive the leading eigenval-
ues up toward the positive boundλi ≤ +1 and all other
eigenvalues down toward the negative boundλi ≥−1. For-
mally, the vector norm of the eigenvalues increases while
their sum remains constant.(2) OnceP becomes reducible
(has multiple stochastic eigenvaluesλi = +1), the matrix
X(k) whosek columns areP’s stochastic eigenvectors has
exactlyk unique rows.(3) Let Z(k) be a matrix formed from
these rows. The productZ(k)Z>(k) is diagonal and the prod-

uctX(k)Z>(k)(Z(k)Z>(k))
−1 = X(k)Z

−1
(k) is a binary (0/1) cluster

indicator matrix that maps all points in a single cluster to a
unique positive axis ofR k (e.g., figure3d).

It remains to be shown whether the conditions in (1) are
sufficient to guarantee absolute convergence. All our ex-
periments, including those of figures3–6, have converged

quite quickly.

When the affinity matrix is produced by a gaussian kernel,
this procedure groups points that all have similar affinity
values, essentially creating clusters where the inter-point
distances are all on the same scale. Clusters may be non-
convex and wrap around each other (e.g., figure4a, fig-
ure4bef; figure5ab), but the results are generally in agree-
ment with human judgment; some authors have drawn con-
nections between gaussian kernel clustering and human
perceptual gestalts [21, 20].

This procedure automatically produces multi-way parti-
tions without prior knowledge of the number of clusters.
However, if the data contains clusters at different scales,
theP matrix may become reducible before all the clusters
have been revealed, only giving a partial clustering. Often
we find that some remaining non-stochastic eigenvalues are
close to 1, indicating the clusters can be further subparti-
tioned. We partition theP matrix according to its stochas-
tic eigenvectors and continue the alternating projections on
its submatrices, thereby obtaining a hierarchical clustering.
Figure5 treats a well-known problem this way.

4.1 Application to motion segmentation

Spectral clustering has become the preferred method for
segmentation problems in computer vision [25, 7, 27, 21,
18, 29, 10, 4, 22]. Motion segmentation (e.g., [7]) takes



(a) all points, frame 101 (b) segmentation (c) individual clusters, separated to show correctness of segmentation

Figure 6: Nonrigid motion segmentation by spectral clustering. 500 frames of 2D tracking data from three people are scaled,
centered, and superimposed to remove spatial cues that might aid grouping. The tracking matrix is factoredP→ M̃S̃ via
SVD; spectral clustering of the columns ofS̃ correctly groups the points on the basis of correlated motion though time.
The grayscale images depict the top ten eigenvectors of the affinity matrix at initialization (far left) and of theP matrix at
convergence (far right) after 11 iterations. At initialization, there is a noisy hint of the clustering in eigenvectors 2 and 5;
at convergence, the clustering is clear in piece-wise constant eigenvectors 1–3, which are associated with unit eigenvalues.
Other eigenvalues are near 1, indicating that the faces can be subpartitioned; this results in segmentation of the jaws.

(a) (b) 

Figure 5: Hierarchical clustering of a problem treated in
[18] and [20]. Our algorithm first gives a bipartitioning (a),
then recursively analyzes the two subsets, using submatri-
ces ofP from the first partitioning. In the second round one
subset is immediately bipartitioned to give (b). One point
appears mis-classified but its assignment may be consistent
with the kernel, since its distances to other points are more
consistent with the scale of inter-point distances on the line
(◦’s) than of those in the tight cluster (♦’s).

2D tracking data for a number of points in the scene, and
seeks to group those points into independently moving 3D

objects on the basis of correlated motion. The 2D projec-
tion of N points on the rigid 3D surface of objectj in image
I f is given byPf j ∈ R 2×N = M f jSj , where motion matrix
M f j encodes the position of the object relative to the cam-
era, and shape matrixSj ∈ R 3×N or ∈ R 4×N gives the 3D
location of the points in object-centered or homogeneous
coordinates. With multiple frames and multiple objects,

P = MS ∈ R 2F×(N1+···+NJ) (8)

.=

 M11 · · · M1J
...

...
...

MF1 · · · MFJ


 S1 0 0

0
... 0

0 0 SJ

 (9)

Each column ofS describes one point; columns represent-
ing points from two different objects are orthogonal (Two
columns from the same object may be orthogonal as well,
but no column can be orthogonal to all columns from the
same object). Unfortunately,S cannot be recovered di-

rectly fromP. Instead, a “thin”SVD can be used to factor
P→ M̃S̃ .= (MG−1)(GS), but unknown matrixG may ar-
bitrarily re-order or mix the columns ofS, destroying the
orthogonal structure. However, if the motions of the ob-
jects are approximately independent (they are never per-
fectly so), two columns iñS belonging to the same ob-
ject will be more similar than two columns belonging to
different objects, in the sense that their inner product will
be more positive because the motions of the corresponding
points is highly correlated. Therefore spectrally clustering
the columns of̃S has been found to to be highly successful
for segmenting the set of points into objects (e.g., [4]).

Two objections have been leveled at this approach: (1) It
has only been applied to sequences in which the points can
be segmented easily using simpler criteria such as spatial
grouping. This is understandable; no one has tracking data
for overlapping objects. (2) It is not clear that the method
would extend to nonrigid objects, where the motions of
points on one object are more weakly correlated.

To satisfy these objections, we constructed an unrealisti-
cally hard segmentation problem by superimposing dense
face-tracking data from three “talking-heads” videos. The
motion is highly nonrigid. To remove spatial separation
cues, the data for each head was centered on the origin in
each frame, so that when the data is combined all three
faces overlap and there are no spatial or translational cues
for segmentation. After centering, the motion of some
points on a face is actually anti-correlated with most of
the other points of the face (e.g., lower-lip versus upper-
lip points). To accommodate the nonrigid motion, we in-
creased the rank of theSVD by a factor of 5 (Si ∈ R 15×N),
which allows 5 modes of deformation per object but yields
a harder, higher-dimensional clustering problem. Figure6
shows thatS̃ is perfectly clustered, yielding the correct
motion segmentation. The tracking data, the evolution of
the dominant eigenvectors, and the extracted clusters are
shown in the accompanying video.



5 Summary

Spectral methods practitioners have long understood that
a representation derived from selected eigenvectors of the
affinity matrix somehow makes embedding and clustering
problems easier for subsequent heuristic algorithms. To
date, formal analyses have justified this approach only for
problems with very obvious cluster structure and for cer-
tain kinds of affinity matrix. The polarization theorem of
section2 provides a unified explanation for virtually all
the algorithms and affinity matrices in the cited literature:
There exists an eigenvector representation which matches
the angles between data-points in feature space; as the di-
mensionality of this representation is reduced, angles be-
tween similar points shrink while angles between dissimi-
lar points grow. This highlights the cluster structure of the
data and makes segmentation by heuristic methods signif-
icantly more likely to succeed. This theorem invites us to
look at the representation as an embedding of the data on
the surface of a hypersphere, where the inner product of
two vectors gives the cosine of their angle. That insight led
us to two algorithms: One finds nonlinear low-dimensional
embeddings of data in spaces having a mixture of linear and
cyclic axes; the other performs clusterings by repeated pro-
jections of the data, eliminating heuristic “post-clustering.”
The clustering algorithm has the appeal that all steps are
well characterized in terms of what information about the
distribution is preserved or lost, and the amount of infor-
mation loss can be bounded and/or minimized. It also per-
forms very well in practice on both synthetic “challenge
problems” from the literature and a real-world motion seg-
mentation problem that is considerably harder than those
contemplated in the computer vision literature.

We are currently exploring better distributions for spheri-
cal data, bounds on convergence rates, and bounds on the
rate at which angles change as dimensionality is reduced.
In our work, we have benefitted from conversations with
Sue Whitesides, Yoav Freund, Josh Tannenbaum, and Paul
Viola, to whom we extend thanks.
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